NET
Framework

T L

.NET Framework Essentials

Thuan Thai
Hoang Q. Lam
Publisher: O'Reilly

First Edition June 2001
ISBN: 0-596 -00165-7, 320 pages

[(=] = (o1 = PR T TR TSR URRRRRRRRRRR R 6

U Lo 1= o = PSPPSRSO 6
ADOUT TIS BOOK.....ciiiiiiiticieiseee et 6
Assumptions This BOOK MaKEScccoirieiiiiniesesee e 7
Conventions Used in ThiS BOOK........ccoiiiiiiiiiiee e 7
HOW 1O CONTACT US ...ttt s 8
ACKNOWIEAGMENTS ..o et 8
Chapter 1. .INET OVEIVIEWcccoieiirieieniesie e eeeeeseesae e ssessesseeeens sreeneessessesssessesnees 10
I Y/ Tod o 1=) 1 AN 10
1.2 The .NET PlatfOrm ... 11
1.3 .NET Framework Design Goalsccccocevivineennninere e 12
2 NN | I =T 0 =1V] P 15
Chapter 2. The Common Language RUNLIME.........ccoeoriieninienes e 17
2.1 CLR ENVIFONMENT ..ot st et 17
2.2 CLR EXECULADIES......c.ooeee e 17
PG I \V 1Y = T = = P 21
2.4 Assemblie s and Manifests ... 26
2.5 Intermediate Language (IL) ..o 31
2.6 The CTS @nd CLS..... e e e nas 3
2.7 CLR EXECULION ...c.tiiicie ettt sttt ne e 37
P2 S TS U | 0 01 0 0= 1Y TSR 40
Chapter 3. .NET Programming.......cccccueceieereniesemieseeseesseses e ssesessssesssessesssesses 42
3.1 Common Programming Model..........ccocoiiiiiiieceee 42
3.2 Core Features and LanQUAagESccccourereriirenieneeneeesesese e 44
3.3 Language INtegratioN.........ccccoceiiiiie et 55
I S U [o] o = Y20 59
Chapter 4. Working with .NET COMPONENLSccooerieiririrenesese e 61
4.1 Deployment OPLIONS ..ot 61
4.2 Distributed COMPONENTS......ccociiiieiereee e 69
4.3 COM+ Services iN .NET ... e nn s 72
4.4 MeSSAQE QUEUING ..coueruiiiiiriesie ettt st sb e e 82
T IS0 1 0 0] 0 1= Y SRR &
Chapter 5. Data and XMLccccoiieiiiiriiesiecie et 85
5.1 ADO.NET AFCRITECTUIEooovieeeeeeie et 85
5.2 ADO.NET BERNETIS. ..ottt 86
5.3 Content COMPONENTSooiiiiii e et e e snree e 88
5.4 Managed ProVIAErS ... et es e 98
5.5 DataSet and XML.....ccoceieieieseseee e seesae st e sae e 107
I IR U] o o]0 4= Y RSP 115
Chapter 6. WED SEIVICEScociieeeceecee sttt st 117
6.1 Web Services iN PractiCe ... 117
6.2 Web Services FrameWOorK........ccccoviiiniiiie e e 118
6.3 WeED ServiCes ProVIAEr ... 127
6.4 Webh Services CONSUMETS ...t st see st sees seneas 131
6.5 Web Services and SECUNILY ... 146

6.6 SUIMIMALIY ..ottt ae e st e e e neer e e re e beesnneas 148

.NET Framework Essentials

Chapter 7. WED FOIMIS.......coiiiieiieiee ettt 149
T .0 ASP ettt b e bbb bRt et benas 149
T2 ASP NET ..o ettt ettt sttt s 149
7.3 The System.Web.Ul NameSpacCe.........cccceceeveeieciesieeeceece e 150
7.4 WeED FOrm SYNTAX ..ot s 156
7.5 ASP.NET Application Development.........cccoiinenenenncneeeeneens 161
7.6 ASP.NET and Web ServiCes........cccooriniineiineinenesesesesee e 173
7.7 Data Binding and the Use of Templates..........ccceeoveiieieeceececennn, 175
7.8 State Management and Scalability ... 180
7.9 SUIMIMATY oottt b e b et e b e e s nnes 182

Chapter 8. WIiNAOWS FOIMIS.......cccooiiiieiiecee ettt st ee s ee e sre e enean 183
8.1 Introducing WiNdOWS FOIMS.......ccceiiriiiienenie e s 183
8.2 The System.Windows.Forms Namespace.........cccoeerereierier e 184
8.3 Windows Forms Development..........cccornenininneneeseesese s 188
8.4 Windows Forms and Web ServicCes........cccovviinincin i 205
8.5 CONCIUSION. ...t e et e 205

AppendiX A. INET LANQUAGES.......ccccoirireriinerie et 207
A.1 Microsoft-Supported Languages for .NET......ccccovnvininnine e 207
A.2 Third-Party Languages for .NETc.ccccieiiiiie e 207

Appendix B. COMMON ACIONYIMS.....ccuiiiierierieriesreres cereeseeseessessesseeseessessess seessessenes 209

Appendix C. CommOoN DAatatyPesccccoererieiirierereerie e 213
O B U L7V = TP PR P PRTUPPUSTRPRPPON 214

AppendiXx D. CommON ULIHILIESccuieriieeesere e e 218
D.1 Assembly Generation Utility (al.eXe)....cccccooviviinenininis e 218
D.2 Assembly Registration Utility (gac.eXe)cccceovenineieiencnncens 219
D.3 MSIL Assembler (ilasm.eXe)cccoririiineiinies e 219
D.4 MSIL Disassembler (ildasm.eXe).....ccccoovvieeiieveccs ceeveeee e 220
D.5 C++ Compiler (CL.eXe) ..o 220
D.6 C#H COMPIIET (CSC.EXE)...iiiiiiiriiriiieieiesieies ettt e eenas 220
D.7 Visual Basic Compiler (VDC.€XE).....ccevveeeveeiecieieeeeeeece e 221
D.8 PE File Format Viewer (dumpbin.eXe)......cccocevevienienienenienennennens 221
D.9 Type Library Exporter (tIbexp.exe) ... 222
D.10 Type Library Importer (tIbimp.eXe).....ccocovvireiniiieine e 222
D.11 XML Schema Definition Tool (XSd.eXe)......cccceeeevieerieeiieriiieeceniennens 222
D.12 Shared Name Utility (SN.€XE)....ccccooiriiririrririne s 224
D.13 Web Service Utility (WSAL.eXE)....ccooeririririresieeee e 224

(©70] (o] 0] 1o o TSROSO 225

.NET Framework Essentials

Preface
Audience
About This Book
Assumptions This Book Makes
Conventions Used in This Book
How to Contact Us
Acknowledgments

1. .NET Overview
1.1 Microsoft .NET
1.2 The .NET Platform
1.3 .NET Framework Design Goals
1.4 .NET Framework

2. The Common Language Runtime
2.1 CLR Environment
2.2 CLR Executables
2.3 Metadata
2.4 Assemblies and Manifests
2.5 Intermediate Lanquage (IL)
2.6 The CTS and CLS
2.7 CLR Execution

2.8 Summary

3. .NET Programming
3.1 Common Programming Model
3.2 Core Features and Languages
3.3 Language Integration
3.4 Summary

4. Working with .NET Components
4.1 Deployment Options
4.2 Distributed Components
4.3 COM+ Services in .NET
4.4 Message Queuing
4.5 Summary

5. Data and XML
5.1 ADO.NET Architecture
5.2 ADO.N ET Benefits
5.3 Content Components
5.4 Managed Providers
5.5 DataSet and XML

5.6 Summary

6. Web Services
6.1 Web Services in Practice
6.2 Web Services Framework
6.3 Web Services Provider
6.4 Web Services Consumers
6.5 Web Services and Security

6.6 Summary

.NET Framework Essentials

7. Web Forms
7.1 ASP
7.2 ASP.NET
7.3 The System.Web.Ul Namespace
7.4 Web Form Syntax
7.5 ASP.NET Application Development
7.6 ASP.NET and Web Services
7.7 Data Binding and the Use of Templates
7.8 State Management and Scalability

7.9 Summary

8. Windows Forms
8.1 Introducing Windows Forms
8.2 The System.Windows.Forms Namespace
8.3 Windows Forms Development
8.4 Windows Forms and Web Services
8.5 Conclusion

A. .NET Languages
A.1 Microsoft-Supported Lanquages for .NET
A.2 Third -Party Languages for .NET

B. Common Acronyms

C. Common Datatypes
C.1 Usage

D. Common Utilities
D.1 Assembly Generation Utility (al.exe)
D.2 Assembly Registration Utility (gac.exe)
D.3 MSIL Assembler (ilasm.exe)
D.4 MSIL Disassembler (ildasm.exe)
D.5 C++ Compiler (cl.exe)
D.6 C# Compiler (csc.exe)
D.7 Visual Basic Compiler (vbc.exe)
D.8 PE File Format Viewer (dumpbin.exe)
D.9 Type Library Exporter (tlbexp.exe)
D.10 Type Library Importer (tlbimp.exe)
D.11 XML Schema Definition Tool (xsd.exe)
D.12 Shared Name Utility (sn.exe)
D.13 Web Service Utility (wsdl.exe)

Colophon

.NET Framework Essentials is a concise and technical overview of the new Microsoft .NET Framework.
Covered here are all of the most important topics—from the underlying Common Language Runtime
(CLR) to its specialized packages for ASP.NET, Web Forms, Windows Forms, XML and data access
(ADO.NET). The authors survey each of the major .NET languages, including VB.NET, C# and

Managed C++.

Preface

A condensed introduction to the Microsoft .NET Framework, this book aims to help programmers
make the transition from traditional Windows programming into the world of .NET programming. The
Microsoft .NET Framework includes the Common Language Runtime (CLR) and a set of base classes
that radically simplify the development of large-scale applications and services. This book examines
the CLR in detail, so that you can put its new features to good use. The book also illustrates how
language integration really works and guides you through component and enterprise development
using the .NET Framework. In addition, it introduces you to four key .NET technologies: Data
(ADO.NET) and XML, Web Services, Web Forms (ASP.NET), and Windows Forms.

We used Beta 2 of the .NET SDK to prepare this manuscript and to develop all the examples and
figures in this book. While we have done our best to ensure that the technical content of this book is
up--date, it is possible that some items have changed slightly from the time of writing. By the time
this book gets to you, there may be a newer release. Also, check http://msdn.microsoft.com/net,
http://www.gotdotnet.com, and the O’Reilly web page for this book,
http://www.oreilly.com/catalog/dotnetfrmess/, regularly.

Audience

While this book is for any person interested in learning about the Microsoft .NET Framework, it targets
seasoned developers with experience in building Windows applications with Visual Studio 6 and the
Visual Basic and Visual C++ languages. Java™ and C/C++ developers will also be well prepared for
the material presented here. To gain the most from this book, you should have experience in object-

oriented, component, enterprise, and web application development. COM programming experience is
a plus.

About This Book

Based on a short course that Thuan has delivered to numerous companies since August 2000, this
book is designed so that each chapter builds on knowledge from the previous one for those unfamiliar
with each technology. To give you a heads-up, here are brief summaries for the chapters and
appendixes covered in this book.

Chapter 1 takes a brief look at Microsoft .NET and the Microsoft .NET Platform. It then describes
the .NET Framework design goals and introduces you to the components of the .NET Framework.

Chapter 2 lifts the hood and peers into the CLR. This chapter surveys the rich runtime, as well as
other features, of the CLR.

Chapter 3 introduces you to .NET programming. You'll examine a simple program that uses object-
oriented and component-based concepts in four different languages: Managed C++, VB.NET, C#, and
IL. You'll also experience the benefits of language integration.

Chapter 4 demonstrates the simplicity of component and enterprise development in .NET. Besides
seeing component-deployment features, you’ll also examine complete programs that take advantage
of transaction, object pooling, role-base security, and message queuing—all in one chapter.

Chapter 5 describes the architecture of ADO.NET and its benefits. Besides being disconnected to
promote scalability, the ADO.NET dataset is also tightly integrated with XML to enhance
interoperability. This chapter introduces you to the .NET data-access objects, as well as the XML
namespace.

.NET Framework Essentials

Chapter 6 describes the next generation of software components, ones that can be accessed
through the Internet. In this chapter, we discuss the protocols that support Web Services, as well as
how to publish and discover them. You will see how XML, used in conjunction with HTTP, breaks the
proprietary nature of current component-oriented software development and enables greater
interoperability.

Chapter 7 introduces you to ASP.NET, which now supports object-oriented and eventdriven
programming, as opposed to conventional ASP development. In this chapter, Web Forms and server
controls take the center stage. In addition, we examine howto build custom server controls, perform
data binding to various .NET controls, and survey state management features in ASP.NET.

Chapter 8 takes conventional form-based programming a step into the future with the classes in the
System.Windows.Forms namespace. Similar to Win32-based applications, Windows Forms are best
used for to build so-called rich or "fat" clients; however, with the new zero-effort installation procedure
of .NET and the advent of Web Services, Windows Forms are appropriate for a host of applications.

Appendix A contains a list of links to web sites with information regarding languages that targets the
CLR, including some burgeoning open source projects.

Appendix B contains a list of commonly used acronyms that are used in .NET literature and
presentations.

Appendix C contains several lists of commonly used datatypes in .NET. This appendix also illustrates
the use of several of its collection classes.

Appendix D surveys the important tools that the .NET SDK provides to ease the tasks of .NET
development.

Now that you know what this book is about, we should explain what this book is not about. This book
does not focus on the marketing aspects of .NET or on other components of the .NET Platforms,
including .NET Enterprise Servers, .NET Building Block Services, or .NET Operating Systems.
Likewise, we do not cover the recently announc ed HailStorm service or the work Microsoft is doing to
make the .NET Framework available on a host of devices.

Assumptions This Book Makes

This book assumes that you are a Windows and web application developer fluent in object-oriented
and componentbased programming. It also assumes that you have some basic knowledge of XML.

While COM is not a crucial prerequisite, if you have COM programming experience, you will
appreciate this book and the .NET Framework all the more.

Conventions Used in This Book
We use the following font conventions in this book:

Italic is used for:

Pathnames, filenames, and program names

Internet addresses, such as domain names and URLs
New terms where they are defined

Const ant wi dt h is used for:

Command lines and options that should be typed verbatim

Direct quotes and specific method names from code examples, as well as specific values for
attributes and settings within code
XML element tags

Constant wi dt hbol d is used for:

User input in code that should be typed verbatim
Items in code to which we’d like to draw the reader’s attention

Constant wi dt hitalic isused forreplaceable items in code, which should be replaced with the
appropriate terms.

In code syntax examples, we occasionally use[val ue] * to represent one or more ins tances of a
value and [val ue] to mean zero or more instances of a value.

How to Contact Us

We have tested and verified the information in this book to the best of our ability, but you may find that
features have changed (or even that we have made mistakes!). Please let us know about any errors
you find, as well as your suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (internationallocal)
(707) 829-0104 (FAX)

You can also send us messages electronically. To be put on the mailing list or request a catalog, send
email to:

info@ il
To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for the book, where we’ll list examples, errata, and any plans for future editions.
You can access this page at:

http://www.oreilly.com/catalog/dotnetfrmess/

For more information about this book and others, see the O’Reilly web site:

http://www.oreilly.com

For more information on .NET in general, visit the O’'Reilly .NET Center at
http://dotnet.oreilly.com/ and the .NET DevCenter at http://www.oreillynet.com/dotnet/.

Acknowledgments

The folks at O’Reilly never cease to amaze us with the support that they provide. We'd like to thank
John Osborn for extending us the contract to write this book and for his continuous support throughout
the project. We’d also like to thank Nancy Kotary for the hard work that she went through to get the
book out under a rigorous schedule. Nancy did a great job reviewing our materials and coordinating

.NET Framework Essentials

the project. Without John and Nancy, this book would not have been possible. Thanks to the
production and design folks at O’Reilly for making this book a reality: Claire Cloutier, Emma Colby,
Erica Corwell, Tatiana Diaz, David Futato, Robert Romano, Anne-Marie Vaduva, Ellie Volckhausen,
Joe Wizda, and especially Jeff Holcomb.

Thanks to our technical reviewers: Brian Jepson, Juval Lowy, Peter Drayton, and Bruce Krell. These
guys did a great job reviewing the manuscript in record time. Juval read the chapters very keenly and
gave numerous suggestions. Brian did an unquestionably outstanding job reading, testing, and
ensuring that the technical content in every chapter lines up with Beta 2.

We'd like to thank Tim Kroll for reviewing the bulk of this book before technical review. Tim deserves
high praise for his quick turnaround. Other people who made partial edits include Richard Bankhead,
Kevin Thai, Hua Thai, Huy Thai, and Nathan Beach. We'd also like to thank Dennis Angeline and Brad
Merrill at Microsoft for answering technical questions on the CLR and languages.

Thuan would like to thank Bob Pfeiff and Ed Bell for their initial support that ignited this book project.
Without their support, Thuan would probably not have begun this project. Thuan also thanks his
parents for their never-ending support in everything he does, including another book project, and
Thuan thanks his siblings and friends for their support and friendship. And thanks to Hoang for another
job well done!

Hoang would like to thank his parents and family for their support and understanding of his being
missing-in-action for several months. Mom and Dad, your ongoing efforts to put your children where
they are today can never be repaid. Hoang would like to thank his wife, VanDu, the source of his
inspiration. Don’t underestimate your contribution to this book. And last, but notleast, a personal thank
youto Thuan, who has always pushed me toward the bleeding edge.

Chapter 1. .NET Overview

Microsoft announced the .NET intitiative in July 2000. The .NET platform is a new development
framework with a new programming interface to Windows services and APls, integrating a number of
technologies that emerged from Microsoft during the late 1990s. Incorporated into .NET are COM+
component services; the ASP web development framework; a commitment to XML and objectoriented
design; support for new web services protocols such as SOAP, WSDL, and UDDI; and a focus on the
Internet.

The platform consists of four separate product groups:

Development tools

A set of languages, including C# and VB.NET; a set of development tools, including Visual
Studio.NET; a comprehensive class library for building web services and web and Windows
applications; as well as the Common Language Runtime to execute objects built within this
framework.

Specialized servers

A set of .NET Enterprise Servers, formerly known as SQL Server 2000, Exchange 2000,
BizTalk 2000, and so on, that provide specialized functionality for relational data storage,
email, and B2B commerce.

Web services

An offering of commercial web services, recently announced as project HailStorm; for a fee,
developers can use these services in building applications that require knowledge of user
identity.

Devices
New .NET-enabled nonPC devices, from cell phones to game boxes.

Microsoft is devoting considerable resources to the development and success of .NET and related
technologies: their bets are on .NET as the next big thing in computing.

1.1 Microsoft .NET

Microsoft has spent the last three years behind closed doors creating Microsoft .NET, which was
publicly launched at PDC 2000 in Orlando, Florida. While the main strategy of .NET is to enable
software as a service, .NET is much more than that. Aside from embracing the Web, Microsoft .NET
acknowledges and responds to the following trends within the software industry today:

Distributed computing

Simplifies the development of robust client/server applications. Current distributed
technologies require high vendor-affinity and lack interoperation with the Web. Microsoft .NET
provides a remoting architecture that exploits open Internet standards, including the Hypertext
Transfer Protocol (HTTP), Extensible Markup Language (XML), and Simple Object Access
Protocol (SOAP).

Componentization

10

.NET Framework Essentials

Simplifies the integration of software components developed by different vendors. The
Component Object Model (COM) has brought reality to software plug-and-play, but COM
component development and deployment are too complex. Microsoft .NET provides a simpler
way to build and deploy components.

Enterprise services

Allow the development of scalable, enterprise applications without writing code to manage
transaction, security, or pooling. Microsoft .NET continues to support enterprise services,
since these services have greatly reduced development time and effort for building large-scale
applications.

Web paradigm shifts

Represents changes in web technologies to simplify the development of web applications.
Over the last few years, web application development has shifted from connectivity (TCP/IP),
to presentation (HTML), to programmability (XML and SOAP). A key goal of Microsoft .NET is
to enable software to be sold and distributed as a service.

Maturity factors

Represents lessons that the software industry has learned from developing large -scale
enterprise and web applications. A commercial web application must support interoperability,
scalability, availability, and manageability. Microsoft .NET facilitates all these goals.

Although these are the main concepts that Microsoft .NET incorporates, what's more notable is that
Microsoft .NET uses open Internet standards (HTTP, XML, and SOAP) at its core to transmit an object
from one machine to another across the Internet. In fact, there is bidirectional mapping between XML
and objects in .NET. For example, a class can be expressed as an XML Schema Definition (XSD); an
object can be converted to and from an XML buffer; a method can be specified using an XML format
called Web Services Description Language (WSDL); and an invocation (method call) can be
expressed using an XML format called SOAP.

1.2 The .NET Platform

The Microsoft .NET Platform consists of five main components, as shown inFigure 1 -1. At the lowest
layer lies the operating system (OS), which can be one of a variety of Windows platforms, including
Windows XP, Windows 2000, Windows Me, and Windows CE. As part of the .NET strategy, Microsoft
has promised to deliver more .NET device software to facilitate a new generation of smart devices.

On top of the operating systemis a series of .NET Enterprise Server products that simplify and
shorten the time required to develop and manage large-scale business systems. These server
products include Application Center 2000, BizTalk Server 2000, Commerce Server 2000, Exchange
Server 2000, Host Integration Server 2000, Internet Security and Acceleration Server 2000, and SQL
Server 2000.

Since Web Services are highly reusable across the Web, Microsoft plans to provide a number of
building-block services that applications developers can use, for a fee. An example of building -block
service is Microsoft Passport, which allows you to use a single username and password at all web
sites that support Passport authentication. On March 19, 2001, Microsoft announced another set of
Web Services with the codename HailStorm. This product encompasses a set of building -block
services that support personalization, centered entirely on consistent user experiences. Microsoft
plans to add newer services, such as calendar, directory, and search services. Third-party vendors are
also creating new Web Services of their own.

Figure 1-1. The Microsoft .NET platform

11

Visual Studio.NET

.NET Enterprise
Servers

.NET Building
NET Framework Block Services

Operating system on servers, desktops, and devices

At the top layer of the .NET architecture is a brand new development tool called Visual Studio.NET
(VS.NET), which makes possible the rapid development of Web Services and other applications. A
successor of Microsoft Visual Studio 6.0, VS.NET is an Integrated Development Environment (IDE)

that supports four different languages and features such as cross-language debugging and the XML
Schema Editor.

And at the center of .NET is the Microsoft .NET Framework —the main focus of this book. The .NET
Framework is a new development and runtime infrastructure that will change the development of
business applications on the Windows platform. It includes the Common Language Runtime (CLR)
and a common framework of classes that can be used by all .NET languages.

1.3 .NET Framework Design Goals

Inherent within the Microsoft .NET Framework are many design goals that are practical yet extremely
ambitious. In this section, we discuss the main design goals of the Microsoft .NET Framework,

including better support for components, language integration, application interoperation across
cyberspace, simple development and deployment, better reliability, and greater security.

1.3.1 Component Infrastructure

Prior to the existence of COM technology, Microsoft developers had no simple way to integrate binary
libraries without referring to or altering their source code. With the advent of COM, programmers were
able to integrate binary components into their applications, similar to the way we plug-and-play
hardware components into our desktop PCs. Although COM was great, the grungy details of COM
gave developers and administrators many headaches.

While COM permits you to integrate binary components developed using any language, it does require
you to obey the COM identity, lifetime, and binary layout rules. You must also write the plumbing code
that is required to create a COM component, such as DIIGetClassObject, CoRegisterClassObject, and
others.

Realizing that all of these requirements result in frequent rewrites of similar code, .NET sets out to
remove all of them. In the .NET world, all classes are ready to be reused at the binary level. You don't
have to write extra plumbing code to support componentization in the .NET Framework. You simply
write a .NET class, which then becomes a part of an assembly (to be discussed inChapter 2), and it
will support plug-and-play.

M com stillplays a role in the .NET Framework. In fact, if you use dumpbin.exe to dump a Portable Executable (PE) file created by the
compilers available in the prerelease or Beta | version of the .NET SDK, you will see some COM residues, specifically a mention of

something called the COVirHeader. See Section 2.2.4 for more information.

In addition to providing such a framework to make development easier, .NET also removes the pain of
developing COM components. Specifically, .NET removes the use of the registry for component
registration and eliminates the requirements for extraneous plumbing code found in all COM
components, including code to support IUnknown, class factories, component lifetime, registration,
dynamic binding, and others.

.NET Framework Essentials

o "Component" is a nasty word because one person may use it to
s | refer to an object and another may use it to refer to a binary
" ¥+ module. To be consistent, this book uses the term "COM

component"” (or simply "component") to refer to a binary module,
such as a DLL or an EXE.

1.3.2 Language Integration

COM supports language independence , which means that you can develop a COM component in any
language you want. As long as your component meets all the rules spelled out in the COM
specification, it can be instantiated and used by your applications. While this supports binary reuse, it
doesn't support language integration. In other words, you can't reuse the code in the COM
components written by someone else; you can't extend a class hosted in the COM component; you
can't catch exceptions thrown by code in the COM component; and so forth.

Microsoft .NET supports not only language independence, but also language integration. This means
that you can inherit from classes, catch exceptions, and take advantage of polymorphism across
different languages. The .NET Framework makes this possible with a specification called the Common
Type System (CTS), which all .NET components must support. For example, everything in .NET is an
object of a specific class that derives from the root class called System.Object. The CTS supports the
general concepts of classes, interfaces, delegates (which support callbacks), reference types, and
value types. The .NET base classes provide most of the base system types, such as ones that support
integer, string, and file manipulation. Because every language compiler must meet a minimum set of
rules stipulated by the Common Language Specification (CLS) and generate code to conform to the
CTS, different .NET languages can intermingle with one another. We will examine the CTS and CLS in

Chapter 2.

1.3.3 Internet Interoperation

COM supports distributed computing through its Distributed COM (DCOM) wire protocol. A problem
with DCOM is that it embeds the host TCP/IP address inside the Network Data Representation (NDR)
buffer, such that it will not work through firewalls and Network Address Translation (NAT) software. In
addition, the DCOM dynamic activation, protocol negotiation, and garbage-collection facilities are
proprietary, complex, and expensive. The solution is an open, simple, and lightweight protocol for
distributed computing. The .NET Framework uses the new industry-supported SOAP protocol, which is
based on the widely accepted XML and HTTP standards.

1.3.4 Simple Development

If you have developed software for the Windows platforms since their appearance, you have seen
everything from the Windows APIs to the Microsoft Foundation Classes (MFC), the Active Template
Library (ATL), the system COM interfaces, and the countless other environments, such as Visual
Interdey, Visual Basic, JScript, and other scripting languages. Each time you set out to develop
something in a different compiler, you had to learn a new API or a class library, because there is no
consistency or commonality among these different libraries or interfaces.

The .NET solution provides a set of framework classes and lets every language use it. Such a
framework removes the need for learning a new API each time you switch languages. Put differently,
it's certainly easier to go through ten methods of a particular class than to go through a thousand API
functions.

1.3.5 Simple Deployment

Imagine this scenario: your Windows application, which uses three shared DLLs, works just fine for
months, but stops working one day after you've installed another software package that overwrites the

13

first DLL, does nothing to the second DLL, and adds an additional copy of the third DLL into a different
directory. If you have ever encountered such a brutal—yet entirely possible—problem, you have
entered DLL Hell. And if you ask a group of seasoned developers whether they have experienced DLL
Hell, they will grimace at you in disgust, not because of the question you've posed, but because they
have indeed experienced the pain and suffering.

To avoid DLL Hell on Windows 2000 (at least for system DLLs), Windows 2000 stores system DLLs in
a cache. If you install an application that overwrites system DLLs, Windows 2000 will overwrite the
added system DLLs with the original versions from the cache.

Microsoft .NET further diminishes DLL Hell. In the .NET environment, your executable will use the
shared DLL with which it was built. This is guaranteed, because a shared DLL must be registered
against something similar to the Windows 2000 cache, called the Global Assembly Cache (GAC). In
addition to this requirement, a shared DLL must have a unique hash value, public key, locale, and
version number. Once you've met these requirements and registered your shared DLL in the GAC, its
physical filename is no longer important. In other words, if you have two versions of a DLL that are
both called MyDII.dll, both of them can live and execute on the same system without causing DLL Hell.
Again, this is possible because the executable that uses one of these DLLs is tightly bound to the DLL
during compilation.

In addition to eradicating DLL Hell, .NET also removes the need for componentrelated registry
settings. A COM developer will tell you that half the challenge of learning COM is understanding the
COM-specific registry entries for which the developer is responsible. Microsoft .NET stores all
references and dependencies of .NET assemblies within a special section called a manifest (see
Chapter 2). In addition, as semblies can be either private or shared. Private assemblies are found
using logical paths or XML-based application configuration files, and public assemblies are registered
in the GAC; in both cases the system will find your dependencies at runtime. If they are missing, you
get an exception telling you exactly what happened.

Finally, .NET brings back the concept of zero-impact installation and removal. This concept is the
opposite of what you have to deal with in the world of COM. To set up a COM application, you have to
register all your components after you have copied them over to your machine. If you fail to perform
this step correctly, nothing will work and you'll pull your hair out. Likewise, to uninstall the application,
you should unregister your components (to remove the registry entries) prior to deleting your files.
Again, if you fail to perform this step correctly, you will leave remnants in the registry that will be
forever extant.

Unlike COM, but like DOS, to set up an application in .NET, you simply xcopy your files from one
directory on a CD to another directory on your machine, and the application will run automatically. 2L
Similarly, you can just delete the directory to uninstall the application from your machine.

=1 This is true for private assemblies, but not for shared assemblies. See Chapter 4 for more details.

1.3.6 Reliability

There are many programming languages and platforms in the commercial software industry, but few of
them attempt to provide both a reliable language and a robust runtime or infrastructure. The most
successful language that we have seen in the commercial software industry is the Java™ language
and the Java Virtual Machine™, which have brought the software-development community much
satisfaction. Microsoft is positioning .NET as the next big thing.

Microsoft .NET requires type safety. Unlike C++, every class in .NET is derived from the mother of all
classes, Object, which supports runtime type-identification features, content-dumping features, and so
on. The CLR must recognize and verify types before they can be loaded and executed. This
decreases the chances for rudimentary programming errors and prevents buffer overruns, which can
be a security weakness.

14

.NET Framework Essentials

Traditional programming languages don't provide a common error- handling mechanism. C++ and
Java support exception handling, but many others leave you in the dust, forcing to invent your own
error-handling facilities. Microsoft .NET supports exceptions in the CLR, providing a consistent error -
handling mechanism. Put another way: exceptions work across all .NET-compatible languages.

When you program in C++, you must deallocate all heap-based objects that you have previously
allocated. If you fail to do this, the allocated resources on your system will never be reclaimed even
though they are no longer needed. And if this is a server application, it won't be robust because the

accumulation of unused resources in memory will eventually bring down the system. Similar to Java,
the .NET runtime tracks and garbage-collects all allocated objects that are no longer needed.

1.3.7 Security

When developing applications in the old days of DOS, Microsoft developers cared little about security
because their applications ran on a single desktop with a single thread of execution. As soon as
developers started developing client and server applications, things got a bit complicated: multiple
users might then have accessed the servers, and sensitive data might be exchanged between the
client and the server. The problem became even more complex in the web environment, since you
could unknowingly download and execute malicious applets on your machine.

To mitigate these problems, .NET provides a number of security features. Windows NT and Windows
2000 protect resources using access-control lists and security identities, but don't provide a security
infrastructure to verify access to parts of an executable's code. Unlike traditional security support
whereby only access to the executable is protected, .NET goes further to protect access to specific
parts of the executable code. For example, to take adva ntage of declarative security checks, you can
prefix your method implementations with security attributes without having to write any code. To take
advantage of imperative security checks, you write the code in your method to explicitly cause a
security check. There are many other security facilities that .NET provides in an attempt to make it
harder to penetrate your applications and system.

1.4 .NET Framework

Now that you are familiar with the major goals of the .NET Framework, let's briefly examine its
architecture. As you can see in Figure 1-2, the .NET Framework sits on top of the operating system,
which can be a few different flavors of Windows EL and consists of a number of components. (Each of
these components is discussed in greater detail starting with Chapter 4 , as described in the
Preface.) .NET is essentially a system application that runs on Windows.

B i fact, the operating system can be—potentially—any flavor of Unix or other operating systems. This is possible due to the
architecture of the CLR, which is discussed in Chapter 2.

Figure1-2. The .NET Framework
;- NET Framework .

Web Services Web Forms Windows Forms

Data and XML classes
(ADONET, S@L, XSIT, XPath, XML etc.)

Framework Base Classes
{1, string, ned, security, threading, fext, reflection, collections, efe.)

Common Language Runtime
{debug, excention, fype checking, JIT compilers)

Windows Platform

15

The most important component of the Framework is something called the CLR. If you are a Java
programmer, think of the CLR as the .NET equivalent of the Java Virtual Machine (JVM). If you don't
know Java, think of the CLR as the heart and soul of the .NET architecture. At a high level, the CLR
activates objects, performs security checks on them, lays them out in memory, executes them, and
garbage-collects them.

Conceptually, the CLR and the JVM are similar in that they are both runtime infrastructures that
abstract the underlying platform differences. However, while the JVM currently supports just the Java
language, the CLR supports all languages that can be represented in the Common Intermediate
Language (CIL). The JVM executes bytecode, so it could technically support many different languages,
too. Unlike Java's bytecode, though, IL is never interpreted. Another conceptual difference between

the two infrastructures is that Java code runs on multiple platforms with a JVM, w hereas .NET code
runs only on the Windows platforms with the CLR (at the time of this writing). Microsoft has submitted
the Common Language Infrastructure (CLI), which is functional a subset of the CLR, to ECMA, so a
third- party vendor could theoretically implement a CLR for a platform other than Windows. For more
information on thirdparty vendors, seeAppendix A.

In Figure 1-2, the layer on top of the CLR is a set of framework base classes. This set of classes is
similar to the set of classes in STL, MFC, ATL, or Java. These classes support rudimentary input and
output functionality, s tring manipulation, security management, network communications, thread
management, text management, reflection functionality, and collections functionality, as well as other
functions.

On top of the framework base classes is a set of classes that extend the base classes to support data
management and XML manipulation. The data classes support persistent data management—data
that is stored on backend databases. These classes include the Structured Query Language (SQL)
classes to let you manipulate persistent data stores through a standard SQL interface. Similar to the
SQL classes, the set of classes called ADO.NET allow you to manipulate persistent data. Alongside of
the data classes, the .NET Framework supports a number of classes to let you manipulate XML data,
perform XML searching, and perform XML translations.

Classes in three different technologies (including Web Services, Web Forms, and Windows Forms)
extend the framework base classes and the data and XML classes. Web Services include a number of
classes that support the development of lightweight distributed components, which will work even in
the face of firewalls and NAT software. These components support plug-and-play across cyberspace,
because Web Services employ standard HTTP and SOAP.

Web Forms include a number of classes that allow you to rapidly develop web Graphical User
Interface (GUI) applications. If you're currently developing web applications with Visual Interdev, you
can think of Web Forms as a facility that allows you to develop web GUIs using the same drag-and-
drop approach as if you were developing the GUIs in Visual Basic. Simply drag and drop controls onto
your Web Form, double-click on a control, and write the code to respond to the associated event.

Windows Forms support a set of classes that allow you to develop native - Windows GUI applications.

You can think of these classes collectively as a much better version of MFC because they support
easier GUI development and provide a common, consistent interface that can be used in all languages.

In the next chapter, we examine the internals of the CLR and how it supports and executes .NET
components, formally called assemblies in .NET.

16

.NET Framework Essentials

Chapter 2. The Common Language Runtime

The most important component of the .NET Framework is the Common Language Runtime (CLR).
The CLR manages and executes code written in .NET languages and is the basis of the .NET

architecture, similar to the Java Virtual Machine. The CLR activates objects, performs security checks
on them, lays them out in memory, executes them, and garbage -collects them.

In this chapter, we describe the CLR environment, executables (with examples in several languages),
metadata, assemblies, manifests, the CTS, and the CLS.

2.1 CLR Environment

The CLR is the underlying .NET infrastructure whose facilities cover all the goals that we spelled out in

Chapter 1. Unlike software libraries such as MFC or ATL, the CLR is built from a clean slate. The
CLR manages the execution of code in the .NET Framework.

An assembly is the basic unit of deployment and versioning,
. consisting of a manifest, a set of one or more modules, and an
+ optional set of resources.

= By

Figure 2-1 shows the two portions of the .NET environment, with the bottom portion representing the
CLR and the top portion representing the CLR executables or Portable Executable (PE) files, which
are .NET assemblies or units of deployment. The CLR is the runtime engine that loads required
classes, performs justin-time compilation on needed methods, enforces security checks, and
accomplishes a bunch of other runtime functionalities. The CLR executables shown in Figure 2-1 are
either EXE or DLL files that consist mostly of metadata and code .

Figure 2-1. The CLR environment

-NET PE File -NET PE File -NET PE File

Common Languoge Runtime

2.2 CLR Executables

Microsoft .NET executables are different from typical Windows executables in that they carry not only
code and data, but also metadata (see "Metadata" and "Intermediate Language" later in this chapter).

In this section, we start off with the code for several .NET applications, and then discuss the .NET PE
format.

2.2.1 Hello, World: Managed C++

Let's start off by examining a simple Hello, World application written in Managed C++, a

Microsoft .NET extension to the C++ language. Managed C++ includes a number of new .NET-specific
keywords that permit C++ programs to take advantage of .NET's new features, including garbage
collection. Here's the Managed C++ version of our program:

#usi ng <nmscorlib.dll>
usi ng namespace System

void main()

17

{
}

Consol e:: WiteLi ne(L"C++ Hello, World!");

As you can see, this is a simple C++ program with an additional directive, #usi ng (shown in bold). If
you have worked with the Microsoft Visual C++ compiler support features for COM, you may be
familiar with the #i npor t directive. While #i nport reverse-engineers type information to generate
wrapper classes for COM interfaces, #usi ng makes accessible all types from the specified DLL,
similar to a#i ncl ude directive in C or C++. However, unlike #i ncl ude, which imports C or C++
types, #usi ng imports types for any .NET assembly, written in any .NET language.

The one and only statement within the main() method is selfexplanatory—it means that we are
invoking a static or class-level method, WriteLine('), on the Consol e class. The L that prefixes the

literal string tells the C++ compiler to convert the literal into a Unicode string. You may have already
guessed that the Console class is a type hosted by mscorlib.dll, and it takes one string parameter.

One thing that you should also notice is that this code signals to the compiler that we're using the

types in the System namespace, as indicated by theusi ng nanespace statement. This allows us to
refer to Console instead of having to fully qualify this class as System::Console.

Given this simple program, enter the following on the command line to compile it, using the new C++
command-line compiler, shipped with the .NET SDK:

cl hello.cpp /CLR /link /entry:min

The / CLR command-line option is extremely important, because it tells the C++ compiler to generate
a .NET PE file instead of a normal Windows PE file.

When this statement is executed, the C++ compiler generates an executable called hello.exe. When
you run hello.exe, the CLR loads, verifies, and executes it.

2.2.2 Hello, World: C#

Because .NET is serious about language integration, we'll illustrate this same program using
Microsoft's new C# language specially designed for .NET. Borrowing from Java and C++ syntax, C# is
a simple and object-oriented language that Microsoft has used to write the bulk of the .NET base
classes and tools. If you are a Java (or C++) programmer, you should have no problem understanding
C# code. Here's Hello, Worldin C#:

usi ng System

cl ass Mai nApp

{
public static void Main()
{
Console. WiteLine("C# Hello, World!'");
}
}

C# is similar to Java in that it doesn't have the concept of a header file: class definitions and
implementations are stored in the same .cs file. Another similarity to Java is that Main() is a public,

static function of a particular class, as you can see from the code. This is different from C++, where
the main() method itself is a global function.

The usi ng keyword here functions similar to usi ng nanespace in the previous example, in that it

signals to the C# compiler that we want to use types within the System namespace. Here's how to
compile this C# program:

18

.NET Framework Essentials

csc hello.cs

In this command, csc is the C# compiler that comes with the .NET SDK. Again, the result of executing
this command is an executable called hello.exe, which you can execute like a normal EXE but is
managed by the CLR.

2.2.3 Hello, World: VB.NET
And since we're on a roll, here is the same program in Visual Basic.NET (VB.NET):

| mports System

Publ i ¢ Modul e nodmai n

Sub Main()
Console. WiteLine ("VB Hello, World!")
End Sub
End Modul e

If you are a VB programmer, you may be in for a surprise. The syntax of the language has changed
quite a bit, but luckily these changes make the language mirror other object-oriented languages, such
as C# and C++. Look carefully at this code snippet, and you will see that you can translate each line of
code here into an equivalent in C#. Whereas C# uses the keywordsusi ng andcl ass, VB.NET uses
the keywords | nport and Modul e, respectively. Here's how to compile this program:

vbc /t:exe /out:Hello.exe Hello.vb

Microsoft now provides a command-line compiler, vbc, for VB.NET. The / t option specifies the type of
PE file to be created. In this case, since we have specified an EXE, hello.exe will be the output of this
command.

o In all three versions of thisHello, World program, the Console
s | class and the WriteLine() method have remained constant. That
" 43 is, no matter which language you're using, once you know how to

do something in one language, you can do it in all the other
languages. This is an extreme change from traditional Windows
programming, in which if you know how to write to a file in C++,
you may not necessarily know how to do it for VB, Java, or Cobol.

2.2.4 NET Portable Executable File

A Windows executable, EXE or DLL, must conform to a file format called the PE file format, which is a
derivative of the Microsoft Common Object File Format (COFF). Both of these formats are fully
specified and publicly available. The Windows OS knows how to load and execute DLLs and EXEs
because it understands the format of a PE file. Given this, any compiler that wants to generate
Windows executables must obey the PE/COFF specification.

Standard Windows PE files are divided into two major sections. The first section includes the

P E/COFF headers that reference the contents within the PE file. In addition to the header section, the
PE file holds a number of native image sections, including the. dat a,. rdata,.rsrc, and. t ext
sections. These are the standard sections of a typical Windows executable, but Microsoft's C/C++
compiler allows you to add your own custom sections into the PE file using a compiler pr agna
statement. For example, you can create your own data section to hold encrypted data that only you
can read. Taking advantage of this ability, Microsoft has added a few new sections to the normal PE
file specifically to support the CLR's functionality. The CLR understands and manages the new

19

sections. For example, the CLR will read these sections and determine how to load classes and
execute your code at runtime.

As shown in Figure 2 -2, the sections that Microsoft has added to the normal PE format are the CLR
header and the CLR data sections. While the CLR header stores information to indicate that the PE
file is a .NET executable, the CLR data section contains metadata and IL code, both of which
determine how the program will be executed.

Figure2-2. The format of a .NET PE file
' PE File k
PE/COFF Heoders

CLR Header

Metodata IL {code)

Native Image Section

Mdata, .rdata, .rsee, text

i CIR Data

If you want to prove to yourself that a .NET executable contains both of these sections, use the

dumpbin.exe utility, which dumps the content of a Windows executable in readable text. For example,
running the following command on the command prompt:

dunpbi n. exe hell 0. exe /all

generates the following data. For brevity, we have shown only the main elements that we want to
illustrate:

M crosoft (R) COFF/ PE Dunper Version 7.00.9188
Copyright (C) 1992-2000 M crosoft Corporation. All rights reserved.

Dunp of file hello.exe
PE signature found
File Type: EXECUTABLE | MAGE

FI LE HEADER VALUES [MS- DOS/ COFF HEADERS]

14C nmachi ne (x86)
3 nunber of sections

OPTI ONAL HEADER VALUES [PE HEADER]
10B magi ¢ # (PE32)

SECTI ON HEADER #1 [SECTI ON DATA]
Code
Execut e Read

RAW DATA #1

.NET Framework Essentials

clr Header:

Section contains the follow ng inports:
nscor ee. dl |
402000 I nport Address Table
402300 | nmport Nane Tabl e

0 _Cor ExeMai n

Looking at this text dump of a .NET PE file, you can see that a PE file starts off with the MS-DOS and
COFF headers, which all Windows programs must include. Following these headers, you will find the
PE header that supports Windows 32 -bit programs. Immediately after the PE header, you will find the
first data section in the executable file. In a .NET PE file, this is the section (SECTION HEADER #1 as
shown here) that stores the CLR header and data. Notice that it is marked as Code and Execute Read,
telling the OS loader and the CLR that this section includes code to be executed at runtime by the
CLR.

In the CLR Header, you should note that there is an imported function called _CorExeMain, which is
implemented by mscoree.dll, the core execution engine of the CLR.2! At the time of this writing,
Windows 98, 2000, and Me have an OS loader that knows how to load standard PE files. To prevent
massive changes to these operating systems and still allow .NET applications to run on them,
Microsoft has updated the OS loaders for all these platforms. The updated loaders know how to check
for the CLR header, and, if this header exists, it executes _CorExeMain, thus not only jumpstarting the
CLR but also surrendering to it. You can then guess that your Main() function will eventually be called
by the CLR.

[e invite to you run dunpbin.exeand view the exports of mscoree.dll at your convenience. You will find that there are also
_CorDIIMain, _CorClassMain, _CorlmageUnloading, and other interesting exports. It's also interesting to note that this DLL is an in-
process COM server, attesting that .NET is created using COM techniques.

Now that we've looked at the contents of the CLR header, let's examine the contents of the CLR data,
including metadata and code, which are arguably the most import elements in .NET.

2.3 Metadata

Metadata is machine -readable information about a resource, or "data about data.” Such information
might include details on content, format, size, or other characteristics of a data source. In .NET,
metadata includes type definitions, version information, external as sembly references, and other
standardized information.

In order for two components, systems, or objects to interoperate with one another, at least one must
know something about the other. In COM, this "something" is an interface specification, which is

im plemented by a component provider and used by its consumers. The interface specification contains
method prototypes with full signatures, including the type definitions for all parameters and return

types.

Only C/C++ developers could readily modify or use Interface Definition Language (IDL) type
definitions—not VB or other developers, and more importantly, not tools or middleware. So Microsoft
had to invent something other than IDL that everyone could use. This something was called a type
library. In COM, type libraries allow a development environment or tool to read, reverse engineer, and
create wrapper classes that are most appropriate and convenient for the target developer. Type
libraries also allow runtime engines, such as the VB, COM, MTS, or COM+ runtime, to inspect types at
runtime and provide the necessary plumbing or intermediary support for applications to use them. For
example, type libraries support dynamic invocation and allow the COM runtime to provide universal
marshaling2l for cross-context invocations.

21

Pl |n com, universal marshaling is a common way to marshal all datatypes. A universal marshaler can be used to marshal all types, so
you don't have to provide your own proxy or stub code.

Type libraries are extremely rich in COM, but many developers criticize them for their lack of
standardization. The .NET team invented a new mechanism for capturing type information. Instead of
using the term "type library," we call such type information metadata in .NET.

2.3.1 Type Libraries on Steroids

Just as type libraries are C++ header files on steroids, metadata is a type library on steroids. In .NET,
metadata is a common mechanism or dialect that the .NET runtime, compilers, and tools can all use.
Microsoft .NET uses metadata to describe all types that are used and exposed by a particular .NET
assembly. In this sense, metadata describes an assembly in detail, including descriptions of its ide ntity
(a combination of an assembly name, version, culture, and public key), the types that it references, the
types that it exports, and the security requirements for execution. Much richer than a type library,
metadata includes descriptions of an assembly and modules, classes, interfaces, methods, properties,
fields, events, global methods, and so forth.

Metadata provides enough information for any runtime, tool, or program to find out literally everything
that is needed for component integration. Let'stake a look at a short list of consumers that make
intelligent use of metadata in .NET, just to prove that metadata is indeed like type libraries on steroids:

CLR
The CLR uses metadata for verification, security enforcement, cross-context marshaling,
memory layout, and execution. The CLR relies heavily on metadata to support these runtime
features, which we will cover in a moment.

Class loader

A component of the CLR, the class loader uses metadata to find and load .NET classes. This
is because metadata records detailed information for a specific class and where the class is
located, may it be in the same assembly, within or outside of a specific namespace, orin a
dependent assembly somewhere on the network.

Just-in-Time (JIT) compilers

JIT compilers use metadata to compile Microsoft Intermediate Language (IL) code. IL is an
intermediate representation that contributes significantly to language -integration support, but it
is not VB code or bytecode, which must be interpreted. .NET JIT compiles IL into native code
prior to execution, and it does this using metadata.

Tools

Tools use metadata to support integration. For example, development tools can use metadata
to generate callable wrappers that allow .NET and COM components to intermingle. Tools
such as debuggers, profilers, and object browsers can use metadata to provide richer
development support. One example of this is the IntelliSense features that Microsoft Visual
Studio.NET supports. As soon as you have typed an object and a dot, the tool displays a list of
methods and properties from which you can choose. This way, you don't have to search
header files or documentation to obtain the exact method or property names and calling
syntax.

Like the CLR, any application, tool, or utility that can read metadata from a .NET assembly can make
use of that assembly. You can use the reflection classes in the Microsoft .NET Framework to inspect
a .NET PE file and know everything about the datatypes that the assembly uses and exposes. The
CLR uses the same set of reflection classes to inspect and provide runtime features, including
memory management, security management, type checking, debugging, remoting, and so on.

22

.NET Framework Essentials

Metadata ensures language interoperability, an essential element to .NET, since all languages must
use the same types in order to generate a valid .NET PE file. The .NET runtime cannot support
features such as memory management, security management, memory layout, type checking,
debugging, and so on without the richness of metadata. Therefore, metadata is an extremely important
part of NET—so important that we can safely say that there would be no .NET without metadata.

2.3.2 Examining Metadata

At this point, we introduce an important .NET tool, the IL disassembler (ildasm.exe), which allows you
to view both the metadata and IL code within a given .NET PE file. For example, if you execute
ildasm.exe and open the hello.exe .NET PE file that you built earlier in this chapter, you will see
something similar to Figure 2-3.

Figure 2-3. The ildasm.exe tool

£ 0:\[BooksTNET Essentials' THDZ cou .30 wase [

Ei= ew Help

= [:4Books\MET Essentials\CHO2\code'helo exe
MAMIFEST

Gl 2Haindon

.{awembi_,l hello az "halia™

)]

The ildasm.exe tool displays the metadata for your .NET PE file in a tree view, so that you can easily
drill down from the assembly, to the classes, to the methods, and so on. To get full details on the
contents of a .NET PE file, you can press Ctrl-D to dump the contents out into a text file.2! Here's an
example of anildasm.exe dump, showing only the contents that are relevant to the current discussion:

BI The ildasm.exe tool also supports a command-line interface. You can execute ildasm.exe /h to view the command-line options. On a
side note, if you want to view exactly which types are defined and referenced, press Ctrl-M in the ildasm.exe GUI, and it will show you
further details.

.assenbly extern /*23000001*/ mscorlib

{

}
.assenbly /*20000001*/ hello

{

.nodul e hel |l 0. exe
/1 WID: {F828835E 3705-4238- BCD7-637ACDD33B78}

.class /*02000002*/ private auto ansi Mai nApp
extends [nmscorlib/* 23000001 */] System Obj ect/* 01000001 */

.method /*06000001*/ public hidebysig static
void Main() cil managed

{
} // end of nmethod Mai nApp:: Main

. met hod /*06000002*/ public hidebysig special nane rtspecial nane
i nstance void .ctor() cil managed

{

} // end of nethod MainApp::.ctor

} I/ end of class MiinApp

23

As you can see, this dump fully describes the type information and dependencies in a .NET assembly.
While the first IL instruction,. assenbl y ext er n, tells us that this PE file references (i.e., uses) an
external assembly called mscorlib, the second IL instruction describes our assembly, the one that is
calledhel | o. We will discuss the contents of the. assenbl y blocks later, as these are collectively
called amanifest. Below the manifest, you see an instruction that tells us the module name, hello.exe,
which has a globally unique identifier (GUID).

Next, you see a definition of a class in IL, starting with the. ¢l ass IL instruction. Notice that this class,
MainApp, derives from System.Object, the mother of all classes in .NET. Although we didn't derive
MainApp from System.Object when we wrote this class earlier in Managed C++, C#, or VB.NET, the

compiler automatically added this specification for us because System.Object is the implicit parent of
all classes that omit the specification of a base class.

Within this class, you see two methods. While the first method, Vai n(), is a static method that we
wrote earlier, the second method, . ct or (), is automatically generated. Vai n() serves as the

main entry point for our appli cation, and . ct or () is the constructor that allows anyone to instantiate
MainApp.

As this example has illustrated, given a .NET PE file, we can examine all the metadata that is
embedded within a PE file. The important thing to keep in mind here is that we can do this without the
need for source code or header files. If we can do this, imagine the exciting features that the CLR or a

third-party tool can offer by simply making intelligent use of metadata. Of course, everyone can now
see your code, unless you use different techniques (e.g., encryption) to protect your property rights.

2.3.3 Inspecting and Emitting Metadata

To load and inspect a .NET assembly to determine what types it supports, use a set of classes
provided by the .NET Framework. Unlike API functions, these classes encapsulate a number of
methods to give you an easy interface for inspecting and manipulating metadata. In .NET, these
classes are collectively called the Reflection API, which includes classes from the System.Reflection
and System .Reflection.Emit namespaces. The classes in the System.Reflection namespace allow you
to inspect metadata within a .NET assembly, as shown in the following example:

usi ng System
usi ng System | G
usi ng System Refl ection;

public class Meta

{
public static int Main()

{
/1l First |load the assenbly.

Assenbly a = Assenbly. LoadFrom("hel |l 0. exe");

/1 Get all the nodules that the assenbly supports.
Modul e[] m = a. Get Modul es();

/Il Get all the types in the first nodul e.
Type[] types = n{0].GetTypes();

/'l Inspect the first type.

Type type = types[0];
Consol e. WiteLine("Type [{0}] has these nethods:", type.Nane);

/1 Inspect the nethods supported by this type.
Met hodl nfo[] mnfo = type. Get Met hods() ;
foreach (Methodlnfo mi in mnfo)

{
Console. WiteLine(" {0}", m);

24

.NET Framework Essentials
}

return O;

}
}

Looking at this simple C# program, you'll notice that we first tell the compiler that we want to use the
classes in the System.Reflection nam espace because we want to inspect metadata. In Main(), we
load the assembly by a physical name, hello.exe, so be sure that you have this PE file in the same
directory when you run this program. Next, we ask the loaded assembly object for an array of modules
that it contains. From this array of modules, we pull off the array of types supported by the module,
and from this array of types, we then pull off the first type. For hello.exe, the first and only type
happens to be MainApp. Once we have obtained this type or class, we loop through the list of its
exposed methods. If you compile and execute this simple program, you see the following result:

Type [Mai nApp] has these nethods:
I nt 32 Get HashCode()
Bool ean Equal s(System Obj ect)
System String ToString()
Void Main()
System Type Get Type()

Although we've written only the Main() function, our class actually supports four other methods, as is

clearly illustrated by this output. There's no magic here, because MainApp inherits these method
implem entations from System.Object, which once again is the root of all classes in .NET.

As you can see, the System.Reflection classes allow you to inspect metadata, and they are really easy
to use. If you have used type library interfaces in COM before, you kn ow that you can do this in COM,
but with much more effort. However, what you can't do with the COM type-library interfaces is create a
COM component at runtime—a missing feature in COM but an awesome feature in .NET. By using the
simple System.Reflection.Emit classes, you can write a simple program to generate a .NET assembly

dynamically at runtime. Given the existence of System.Reflection.Emit, anyone can write a
custom .NET compiler.

2.3.4 Interoperability Support

Because it provides a common format for specifying types, metadata allows different components,
tools, and runtimes to support interoperability. As demonstrated earlier, you can inspect the metadata
of any .NET assembly. By the same token, you can ask an object at runtime for its type, methods,
properties, events, and so on. Tools can do the same. The Microsoft .NET SDK ships four important
tools that assist interoperability, including the .NET assembly registration utility (RegAsm.exe), the
type library exporter (tlbexp.exe), the type library importer (tlbimp.exe), and the XML schema definition
tool (xsd.exe).

You can use the .NET assembly registration utility to register a .NET assembly into the registry so that
COM clients can make use of it. The type library exporter is a tool that generates a type library file
(.tlb) when you pass it a .NET assembly. Once you have generated a type library from a given .NET
assembly, you can import the type library into VC++ or VB and use the .NET assembly in exactly the
same way as if you were using a COM component. Simply put, the type library exporter makes a .NET

assembly look like a COM component. The following command-line invocation generates a type library,
called hello.tlb:

t| bexp. exe hell o. exe
Microsoft also ships a counterpart to tlbexp.exe, the type library importer; its job is to make a COM

component appear as a .NET assembly. So if you are developing a .NET application and want to
make use of an older COM component, use the type library importer to convert the type information

25

found in the COM component into .NET equivalents. For example, you can generate a .NET PE using
the following command:

t1 bi np. exe COVServer.tlb

Executing this command will generate a .NET assembly in the form of aDLL (e.g.,COMServer.dll).
You can reference this DLL like any other .NET assembly in your .NET code. When your .NET code
executes at runtime, all invocations of the methods or properties within this DLL are directed to the

original COM component.

- Be aware that the type library importer doesn't let you reimport a
s | type library that has been previously exported by the type library
"4 exporter. In other words, if you try to use tlhimp.exe on hello.tlb,

which was generated by tlbexp.exe, tlbhimp.exe will barf at you.

Another impressive tool that ships with the .NET SDK is the XML schema definition tool, which allows
you to convert an XML schema into a C# class, and vice versa. This XML schema:

<schema xm ns="http://ww. w3. org/ 2001/ XM_Schenma"
t ar get Namespace="ur n: book: car"
xm ns:t="urn: book: car">
<el ement name="car" type="t:CCar"/>
<conpl exType nane="CCar" >
<all >
<el enent nanme="vin" type="string"/>
<el ement nanme="nake" type="string"/>
<el ement nanme="nodel " type="string"/>
<el ement nanme="year" type="int"/>
</all>
</ conpl exType>
</ schema>

represents a type called CCar. To convert this XML schema into a C# class definition, execute the
following:

xsd. exe /¢ car. xsd

The / c option tells the tool to generate a class from the given XSD file. If you execute this command,
you get car.cs as the output that contains the C# code for this type.

The XML schema definition tool can also take a .NET assembly and generate an XML schema
definition (XSD) that represents the types within the .NET assembly. For example, if you execute the
following, you get an XSD file as output:

xsd. exe sonefil e. exe

Before we leave this topic, we want to remind you to try out these tools for yourself, because they offer
many impressive features that we won't cover in this introductory book.

2.4 Assemblies and Manifests

As we've just seen, types must expose their metadata to allow tools and programs to access them and
benefit from their services. Metadata for types alone is not enough. To simplify software plug-and-play
and configuration or installation of the component or software, we also need metadata about the
component that hosts the types. In this section, we talk about .NET assemblies (deployable units) and
manifests (the metadata that describes the assemblies).

26

.NET Framework Essentials

2.4.1 Assemblies Versus Components

During the COM era, Microsoft documentation inconsistently used the term componentto mean a
COM class or a COM module (DLLs or EXESs), often forcing readers or developers to consider the
context of the term each time they encountered it. In .NET, Microsoft has addressed this confusion by
introducing a new concept, assembly, which is a software component that supports plug-and-play,
much like a hardware component. Theoretically, a .NET assembly is approximately equivalent to a
COM module. In practice, an assembly can contain or refer to a number of types and physical files
(including bitmap files, .NET PE files, and so forth) that are needed at runtime for successful execution.
In addition to hosting IL code, an assembly is a basic unit of versioning, deployment, security
management, side-by-side execution, sharing, and reuse, as we discuss next.

o To review: an assembly is a logical DLL or EXE, and a manifest is
«+). adetailed description (metadata) of an assembly, including its
"4+ version, what other assemblies it uses, and so on.

2.4.2 Unique Identities

Type uniqueness is important in RPC, COM, and .NET. Given the vast number of GUIDs in COM
(application, library, class, and interface identifiers), development and deployment can be tedious
because you must use these magic numbers in your code and elsewhere all the time. In .NET, you
refer to a specific type by its readable name and its namespace. Since a readable name and its
namespace are not enough to be globally unique, .NET guarantees uniqueness by using unique
public/private key pairs. Given this, all assemblies that are to be shared (and therefore called shared
assemblies) by multiple applications must be built with a public/private key pair. Public/private key
pairs are used in public -key cryptography. Since publickey cryptography uses asymmetric encryption,
an assembly creator can sign an assembly with a private key, and anyone can verify that digital
signature using the assembly creator's public key.

To sign an assembly digitally, you must use a public/private key pair to build your assembly. At build
time, the compiler generates a hash of the assembly files, signs the hash with the private key, and
stores the resulting digital signature in a reserved section of the PE file. The public key is also stored
in the assembly.

To verify the assembly's digital signature, the CLR uses the assembly's public key to decrypt the
assembly's digital signature, resulting in the original, calculated hash. In addition, the CLR uses the
information in the assembly’'s manifest to dynamically generate ahash. This hash value is then
compared with the original hash value. These values must match, or we must assume that someone
has tampered with the assembly.

Now that we know how to sign and verify an assembly in .NET, let's talk about how the CLR ensures
that a given application loads the trusted assembly with which it was built. When you or someone else
builds an application that uses a shared assembly, the application's assembly manifest will include an
8-byte hash of the shared assembly’s public key. When you run your application, the CLR dynamically
derives the 8 -byte hash from the shared assembly's public key and compare this value with the hash
value stored in your application's assembly manifest. If these values match, the CLR assumes that it
has loaded the correct assembly for you ™!

M you can use the .NET Strong (a.k.a., Shared) Name (sn.exe) utility to generate a new key pair for a shared assembly. Before you can
share your assembly, you must register it in the Global Assembly Cache, or GAC (see "Side-by-Side Execution” later in this chapter)—
you can do this by using the .NET Global Assembly Cache Utility (gacutil.exe). The GAC is simply a directory called Assembly located
under the Windows system (%wi ndi r %) directory, which is typically WINNT if you're using Windows 2000.

2.4.3 1L Code

An assembly contains the IL code—see " Intermediate Language (IL)" later in this chapter—that the
CLR executes at runtime. The IL code typically uses types defined within the same assembly, but it

27

also may use or refer to types in other assemblies. While nothing special is required to take advantage
of the former, the assembly must define references to other assemblies to do the latter, as we will see
in a moment. There is one caveat: each assembly can have at most one entry point, such as

DlIMain(), WinMain(), or Main(). You must follow this rule because when the CLR loads an assembly,
it searches for one of these entry points to start assembly execution.

2.4.4Versioning
There are four types of assemblies in .NET:
Static assemblies

These are the .NET PE files that you create at compile time. You can create static assemblies
using your favorite compiler: csc, cl, orvbc.

Dynamic assemblies

These are PE-formatted, in-memory assemblies that you dynamically create at runtime using
the classes in the System.Reflection.Emit namespace.

Private assemblies
These are static assemblies used by a specific application.
Public or shared assemblies

These are static assemblies that must have a unique shared name and can be used by any
application.

An application uses a private assembly by referring to the assembly using a static path or through an
XML-based application configuration file. While the CLR doesn't enforce versioning policies—checking
whether the correct version is used—for private assemblies, it ensures that an application uses the
correct shared assemblies with which the application was built. Thus, an application uses a specific
shared assembly by referring to the specific shared assembly, and the CLR ensures that the correct
version is loaded at runtime.

In .NET, an assembly is the smallest unit to which you can associate a version nhumber; it has the
following format:

<maj or _ver si on>. <m nor _versi on>. <bui | d_nunber >. <revi si on>
2.4.5 Deployment

Since a client application's assembly manifest (to be discussed shortly) contains information on
external references —including where the external assembly lives and what version of the assembly
the application uses—you no longer have to use the registry to store activation and marshaling hints
as in COM. Using the version and security information recorded in your application's manifest, the
CLR will load the carect shared assembly for you. The CLR does lazy loading of external assemblies
and will retrieve them on demand when you use their types. Because of this, you can create
downloadable applications that are small, with many small external assemblies. When a particular
external assembly is needed, the runtime downloads it automatically without involving registration or
computer restarts.

28

.NET Framework Essentials
2.4.6 Security

The concept of a user identity is common in all development and operating platforms, but the concept
of a code identity, in which even a piece of code has an identity, is new to the commercial software
industry. In .NET, an assembly itself has a code identity, which includes information such as the

assembly's shared name, version number, culture, and public key. Using this concept, the CLR can
verify whether an assembly is permitted to access system resources or make calls to other assemblies.

To coincide with the concept of a code identity, the CLR supports the concept of code access. In other
words, the runtime determines the access to a specific assembly based on a set of permissions. The
CLR checks these permissions and determines whether to grant execution requests at the assembly
level. When you create an assembly, you can specify a set of permissions that the client application
must have in order to use your assembly. At runtime, if the client application has code access to your
assembly, it can make calls to your assembly's objects— otherwise, it won't be able to use your
assembly.

2.4.7 Side-by-Side Execution

We have said that an assembly is a unit of versioning and deployment, and we've talked briefly about
DLL Hell, something that .NET intends to minimize. The CLR allows any versions of the same shared
DLL (shared assembly) to execute at the same time, on the same system, and even in the same
process. This concept is known as side-by-side execution Microsoft .NET accomplishes side-by-side
execution by using the versioning and deployment features that are innate to all shared assemblies.
This concept allows you to install any versions of the same shared assembly on the same machine,
without versioning conflicts or DLL Hell. The only caveat is that your assemblies must be public or
shared assemblies, meaning that you must register them against the GAC using a tool such as

the .NET Global Assembly Cache Utility (gacutil.exe). Once you have registered different versions of
the same shared assembly into the GAC, the human-readable name of the assembly no longer
matters—what's important is the information provded by .NET's versioning and deployment features.

Recall that when you build an application that uses a particular shared assembly, the shared
assembly's version information is attached to your application's manifest. In addition, an 8-byte hash of
the shared assembly's public key is also attached to your application's manifest. Using these two
pieces of information, the CLR can find the exact shared assembly that your application uses, and it
will even verify that your 8 -byte hash is indeed equivalent to that of the shared assembly. Given that
the CLR can identify and load the exact assembly, .NET should that mean the end of DLL Hell is in
sight.

2.4.8 Sharing and Reuse

When you want to share your assembly with the rest of the world, your assembly must have a shared
or strong name, and you must register it in the GAC. Likewise, if you want to use or extend a particular
class that is hosted by a particular shared assembly, you don't just import that specific class, but you
import the whole assembly into your application. Therefore, the whole assembly is a unit of sharing.

Assemblies turn out to be an extremely important feature in .NET because they are an essential part
of the runtime. In .NET, an assembly encapsulates all types that are defined within the assembly. For
example, while two different assemblies, Personal and Company, can define and expose the same
type, Car, Car by itself has no meaning unless you qualify it as [Personal]Car or [Company]Car. Given
this, all types are scoped to their containin g assembly, and for this reason, the CLR cannot make use
of a specific type unless the CLR knows the type's assembly. In fact, if you don't have an assembly
manifest, which describes the assembly, the CLR will not execute your program.

2.4.9 Manifests: Assembly Metadata

An assembly manifest is metadata that describes everything about the assembly, including its identity,
a list of files belonging to the assembly, references to external assemblies, exported types, exported

29

resources, and permission requests. In short, it describes all the details that are required for
component plug-and-play. Since an assembly contains all these details, there's no need for storing
this type of information in the registry, as in the COM world.

In COM, when you use a particular COM class, you give the COM library a class identifier. The COM
library looks up in the registry to find the COM component that exposes that class, loads the
component, tells the component to give it an instance of that class, and returns a reference to this
instance. In .NET, instead of looking into the registry, the CLR peers right into the assembly manifest,

determines which external assembly is needed, loads the exact assembly that's required by your
application, and creates an instance of the target class.

Let's examine the manifest for the hello.exe application that we built earlier. Recall that we used the
ildasm.exe tool to pick up this information.

.assenbly extern nscorlib

{
. publ i ckeyt oken = (B7 7A 5C 56 19 34 EO 89)
.hash = (8B BB 5A BD 8D A3 12 7D 08 A2 25 DO 48 17 28 4F 20 57 EA 07)
.ver 1:0:2411:0
}
.assenbly hello
{
. hash al gorithm 0x00008004
.ver 0:0:0:0
}

.nodul e hell 0. exe
/1 MWID:. {F828835E-3705-4238-BCD7- 637ACDD33B78}

You'll notice that this manifest starts off identifying an external or referenced assembly, with

nscor | i b asthe assembly name, which this particular application references. The

keywords . assenbl y ext er n tell the CLR that this application doesn'timplement nscor | i b, but
makes use of it instead. This external assembly is one that all .NET applications will use, so you will
see this external assembly defined in the manifest of all assemblies. You'll notice that, inside this
assembly definition, the compiler has inserted a special value called the publickeytoken, which is basic
information about the publisher of nscor | i b. The compiler generates the value

for. publ i ckeyt oken by hashing the public key associated with the nscor | i b assembly. Another
thing that you should notice is the . hash value, which is the resuling cipher data of selected contents
within the nscor | i b assembly. While the . publ i ckeyt oken value allows the CLR to ensure that
we're using the right assembly at runtime, the . hash value allows the CLR to determine whether the
referenced assembly has been illegally modified. Finally, the last thing to note in thenscor | i b block
is the version number of nscor | i b &L

Bl The fascinating details of al this are explained in The IL Assembly Language Programmers' Reference, which comes with the .NET
SDK. If you really want to understand IL, read this document.

Now that we've covered the first . assenbl v block, let's examine the second, which describes this
particular assembly. You can tell that this is a manifest block that describes our application's assembly
because there's noext er n keyword. The identity of this assembly is made up of a readable assembly
name, hel | o, its version information, 0: 0: 0: 0, and an optional culture, which is missing. Within this
block, the first line indicates the hash algorithm that is used to hash selected contents of this assembly,
the result of which will be encrypted using the private key. However, since we are not sharing this
simple assembly, there's no encryption and there's no. publ i ckeyt oken value.

The last thing to discuss is. nodul e, which simply identifies the output flename of this assembly,
hello.exe. You'll notice that a module is associated with a GUID, whichmeans you get a different

GUID each time you build the module. Given this, a rudimentary test for exact module equivalence is
to compare the GUIDs of two modules.

.NET Framework Essentials

Because this example is so simple, that's all we get for our manifest. In a more complicated assembly,
you can get all this, including much more in-depth details about the make up of your assembly. Since
these are beyond the scope of this book, we suggest you read The IL Assembly Language
Programmers' Reference for more information.

2.4.10 Creating Assemblies

An assembly can be a single-module assembly or a multi-module assembly. In a single-module
assembly, everything in a build is clumped into one EXE or DLL, an example of which is the hello.exe
application that we developed earlier. This is easy to create because a compiler takes care of creating
the single -module assembly for you.

If you wanted to create a multi-module assembly, one that contains many modules and resource files
you have a few choices. One option is to use the Assembly Linker (al.exe) that is provided by the .NET
SDK. This tool takes one or more IL or resource files and spits out a file with an assembly manifest.

2.4.11 Using Assemblies

To use an assembly, firstimport the assembly into your code, the syntax of which is depend ent upon

the language that you use. For example, this is how we import an assembly in C#, as we have seen
previously in the chapter:

usi ng System

When you build your assembly, you must tell the compiler that you are referencing an external
assembly. Again, how you do this is different depending on the compiler that you use. If you use the
C# compiler, here's how it's done:

csc /r:mscorlib.dll hello.cs

Earlier, we showed you how to compile hello.cs without the / r : option, but both techniques are
equivalent. The reference to mscorlib.dll is inherently assumed because it contains all the base
framework classes.

2.5 Intermediate Language (IL)

In software engineering, the concept of abstraction is extremely important. We often use abstraction to
hide the complexity of system or application services, providing instead a simple interface to the
consumer. As long as we can keep the interface the same, we can change the hideous internals, and
different consumers can use the same interface.

In language advances, scientists introduced different incarnations of language-abstraction layers, such
as p-code and bytecode . Produced by the Pascal -P compiler, p-code is an intermediate language that
supports procedural programming. Generated by Java compilers, bytecode is an intermediate
language that supports object-oriented programming. Bytecode is a language abstraction that allows
Java code to run on different operating platforms, as long as the platforms have a Java Virtual
Machine (JVM) to execute bytecode.

Microsoft calls its own language -abstraction layer the Common Intermediate Language (CIL). Similar
to bytecode, IL supports all object-oriented features, including data abstraction, inheritance,
polymorphism, and useful concepts such as exceptions and events. In addition to these features, IL
supports other concepts, such as properties, fields, and enumeration. Any .NET language may be
converted into IL, so .NET supports multiple languages and perhaps multiple platforms in the future
(as long as the target platforms have a CLR).

31

Shipped with the .NET SDK, the MSIL Instruction Set Specification describes the important IL
instructions that language compilers should use. In addition to this specification, the .NET SDK
includes another important document for IL development, The IL Assembly Language Programmers'
Reference. Both of these documents are intended for developers who write compilers and tools, but
you should read them to further understand how IL fits into .NET. While you can develop a valid .NET
assembly using the supported IL instructions and features, you'll find IL to be very tedious because the
instructions are a bit cryptic. However, should you decide to write pure IL code, you could use the IL
Assembler (ilasm.exe) to turn your IL code into a .NET PE file &

[you can test this utility using the IL disassembler to load a .NET PE file and dump out the IL to a text file. Once you've done this, use
the IL Assembler to covert the text file into a .NET PE file.

Enough with the theory: let's take a look at some IL. Here's a excerpt of IL code for the hello.exe
program that we wrote earlier:2

1 pon't compile this IL code: it's incomplete because we've extracted unclear details to make it easier to read. If you want to see the
complete IL code, use ildasm.exe on hello.exe.

.class private auto ansi Mi nApp
extends [nmscorlib] System Ohj ect
{

. met hod public hidebysig static
void Main() cil managed
{

.entrypoint
.maxstack 8
| dstr "C# hello world!"
call void [nmscorlib] System Consol e::WiteLine(class System String)
ret
} /1 end of nmethod Mai nApp:: Main

. met hod public hidebysig special nane rtspeci al nane
i nstance void .ctor() cil managed

{
. maxstack 8
| darg. 0
call instance void [nmscorlib]System Chject::.ctor()
ret

} // end of nmethod Mai nApp::.ctor

} /1 end of class MinApp

Ignoring the weird-looking, syntactic details, you can see that IL is conceptually the same as any other
object-oriented language. Clearly, there is a class that is called MainApp that derives from
System.Object. This class supports a static method called Main(), which contains the code to dump
out a text string to the console. Although we didn't write a constructor for this class, our C# compiler
has added the default constructor for MainApp to support object construction.

Since a lengthy discussion of IL is beyond the scope of this book, let's just concentrate on the Main()
method to examine its implementation briefly. First, you see the following method signature:

. met hod public hidebysig static
void Main() cil managed

This signature declares a method that is public, meaning that it can be called by anyone, and static,
meaning it's a classdevel method. The name of this method is Main(). Main() contains IL code that is
to be managed or executed by the CLR. The hi debysi g attribute says that this method hides the
same methods (with the same signatures) defined earlier in the class hierarchy. This is simply the

default behavior of most object oriented languages, such as C++. Having gone over the method
signature, let's talk about the method body itself:

32

.NET Framework Essentials
{

.entrypoi nt
. maxstack 8
[dstr "C# hello world!"
call void [nscorlib] System Consol e:: WitelLine(class System String)
ret
} // end of method MainApp:: Main

This method uses two directives: . ent rypoi nt and. maxst ack. The. entrypoi nt directive
specifies that Main() is the one and only entry point for this assembly. The . mexst ack directive
specifies the maximum stack slots needed by this method; in this case, the maximum number of stack
slots required by Main() is eight. Stack information is needed for each IL method because IL
instructions are stack-based, allowing language compilers to generate IL code easily.

In addition to these directives, this method uses three IL instructions. The first IL instruction, | dst r,
loads our literal string onto the stack so that the code in the same block can use it. The next IL
instruction, cal | , invokes the WriteLine() method, which picks up the string from the stack. The cal |
IL instruction expects the metho d's arguments to be on the stack, with the first argument being the first
object pushed on the stack, the second argument being the second object pushed onto the stack, and
so forth. In addition, when you use the cal | instruction to invoke a method, you must specify the
method's signature. For example, examine the method signature of WriteLine():

voi d [nmscorlib] System Consol e: : WitelLine(class System String)

and you'll see that WriteLine() is a static method of the Console class. The Console class belongs to
the System namespace, which happens to be a part of themscorlib assembly. The WriteLine()
method takes a System.String object and returns avoi d. The last thing to note in this IL snippet is
that the r et IL instruction simply returns control to the c aller.

2.6 The CTSand CLS

Having seen the importance of metadata and IL, let's examine the CTS and the CLS. Both the CTS
and the CLS ensure language compatibility, interoperability, and integration.

2.6.1 The Common Type System (CTS)

Because .NET treats all languages as equal, a class written in C# should be equivalent to a class
written in VB.NET, and an interface defined in Managed C++ should be exactly the same as one that
is specified in managed COBOL. Languages must agree on the meanings of these concepts before
they can integrate with one another. In order to make language integration a reality, Microsoft has
specified a common type system to which every .NET language must abide. In this section, we outline
the common types that have the same conceptual semantics in every .NET language. Microsoft .NET
supports a rich set of types, but we limit our discussion to the important ones, including value types,
reference types, classes, interfaces, and delegates.

2.6.1.1 Value types

In general, the CLR supports two different types: value types and reference types. Value types
represent values allocated on the stack. They cannot be null and must always contain some data.
When value types are passed into a function, they are passed by value, meaning that a copy of the
value is made prior to function execution. This implies that the original value won't change, no matter
what happens to the copy during the function call. Since intrinsic types are small in size and don't
consume much memory, the resource cost of making a copy is negligible and outweighs the
performance drawbacks of object management and garbage collection. Value types include primitives,
structures, and enumerations; examples of which are shown in the following C# code listing:

int i; /[l primtive

struct Point { int x, y; } // structure
enum State { OFf, On } /1 enumeration

You can also create a value type by deriving a class from System.ValueType. One thing to note is that
a value type is sealed, meaning that once you have derived a class from System.ValueType, no one
else can derive from your class.

2.6.1.2 Reference types

If a type consumes significant memory resources, then a reference type provides more benefits over a
value type. Reference types (including objects, interfaces, and pointers) are so called because they
contain references to heap-based objects and can be null. These types are passed by reference,
meaning that when you pass such an object into a function, an address of or pointer to the object is
passed—not a copy of the object, as in the case of a value type. Since you are passing a reference,
the caller will see whatever the called function does to your object. The first benefit here is that a
reference type can be used as an output parameter, but the second benefit is that you don't waste
extra resources because a copy is not made. If your object is large (consuming lots of memory), then
reference types are a better choice. In .NET, one drawback of a reference type is that it must be
allocated on the managed heap, which means it requires more CPU cycles because it must be
managed and garbage-collected by the CLR. In .NET, the closest concept to destruction is finalization,
but unlike destructors in C++, finalization is nondeterministic. In other words, you don't know when
finalization will happen because it occurs when the garbage collector executes (by default, when the
system runs out of memory). Since finalization is nondeterministic, another drawback of reference
types is that if reference-type objects hold on to expensive resources that will be released during
finalization, system performance will degrade because the resources won't be released until these
objects are garbage-collected. Reference types include classes, interfaces, arrays, and delegates;
examples of which are shown in the following C# code listing:

class Car {} /'l class
interface | Steering {} /'l interface
int[] a = new int[5]; /'l array

del egate void Process(); // delegate

Classes, interfaces, and delegates will be discussed shortly.

2.6.1.3 Boxing and unboxing

Microsoft .NET supports value types for performance reasons, but everything in .NET is ultimately an
object. In fact, all primitive types have corresponding classes in the .NET Framework. For example,

i nt isinfact an alias of System.Int32, and System.Int32 happens to derive from System.ValueType,
meaning that it is a value type. Value types are allocated on the stack by default, but they can always
be converted into a heap-based reference-type object, called boxing. The following code snippet
shows that we can create a box and copy the value of i into it:

int i = 1; /1 1 - a value object
obj ect box = i; /'l box - a reference object

When you box a value, you get an object upon which you can invoke methods, properties, and events.
For example, once you have converted the integer into an object, as shown in this code snippet, you
can call methods that are defined in System.Object, including ToString(), Equals(), and so forth.

The reverse of boxing is of course unboxing, which means that you can convert a heap -based
reference-type object into its value-type equivalent, as shown here:

int j = (int)box;

.NET Framework Essentials

This example simply uses thecast operator to cast a heap-based object called box into a value-type
integer.

2.6.1.4 Classes, properties, indexers

The CLR provides full support for object-oriented concepts (such as encapsulation, inheritance, and
polymorphism) and class features (such as methods, fields, static members, visibility, accessibility,
nested typ es, and so forth). In addition, the CLR supports new features that are nonexistent in many
traditional object-oriented programming languages, including properties, indexers, and events 2L
Events are covered in Chapter 8. For now let's briefly talk about properties and indexers.

51 An event is a callback that is implemented using delegates, which is covered shortly.

A property is similar to a field (a member variable), with the exception that there is a getter and a setter
method, as follows:

public class Car
{
private string neke;
public string Mke
{
get { return neke; }
set { make = val ue; }
}
}

Car ¢ = new Car();
c. Make = "Acura"; // use setter
String s = c. Make; // use getter

Although this is probably the first time you've seen such syntax, this example is straightforward and

really needs no explanation, with the exception of the keywordval ue . This is a special keyword that
represents the one and only argument to the setter method.

Syntactically similar to a property, an indexer is analogous to oper at or [| in C++, as it allows array-
like acc ess to the contents of an object. In other words, it allows you to access an object like you're
accessing an array, as shown in the following example:

public class Car

{
private string[] wheels;
public string this[int index]
{
get { return wheel s[index]; }
set { wheel s[index] = value; }
}
}
Car ¢ = new Car();
c[0] = "LeftWeel"; // c[0] can be an |I-value or an r-val ue

Here's one note before we leave this topic: unlike C++ but similar to Java, classes in .NET support
only single-implementation inheritance.

2.6.1.5 Interfaces

Interfaces support exactly the same concept as a C++ abstract base class (ABC) with only pure virtual
functions. An ABC is a class that declares one or more pure virtual functions and thus cannot be

instantiated. If you know COM or Java, interfaces in .NET are conceptually equivalent to a COM or
Java interface. You specify them, but you don't implement them. A class that derives from your
interface must implement your interface. An interface may contain methods, properties, indexers, and
events. In .NET, a class can derive from multiple interfaces.

2.6.1.6 Delegates

One of the most powerful features of C is its support for function pointers. Function pointers allow you
to build software with hooks that can be implemented by someone else. In fact, function pointers allow
many people to build expandable or customizable software. Microsoft .NET supports a type-safe
version of function pointers, called delegates. Here's an example that may take a few minutes to sink
in, but once you get it, you'll realize that it's really simple:

usi ng System
cl ass TestDel egate

{
/1 1. Define callback prototype

del egate void MsgHandl er(string strMsg);

/1 2. Define callback method
void OnMsg(string striMsg)

{

Consol e. WiteLine(strMsqg);
}
public static void Main()
{

TestDel egate t = new TestDel egate();

/1 3. Wre up our callback nethod
MsgHandl er f = new MsgHandl er (t. OnMsQ);

/1 4. Invoke the call back nethod indirectly
f("Hello, Delegate.");
}
}

The first thing to do is to define a callback function prototype, and the important keyword here is

del egat e, which tells the compiler that you want an object -oriented function pointer. Under the hood,
the compiler generates a nested class, MessageHandler, which derives from
System.MulticastDelegate 2! A multicast delegate supports many receivers, as opposed to a single-
cast delegate (supported by System.Delegate), which is a base class of System.MulticastDelegate.
Once you've defined your prototype, you must define and implement a method with a signature that
matches your prototype. Then, simply wire up the callback method by passing the function to the
delegate's constructor, as shown in this code listing. Finally, invoke your callback indirectly. Having
gone over delegates, you should note that delegates form the foundation of events, which are
discussed in Chapter 8 .

I ¢ you want to see this, use ildasm.exe and view the metadata of the delegate.exe sample that we've provided.

2.6.2 The Common Language Specification (CLS)

A goal of .NET is to support language integration in such a way that programs can be written in any
language, yet can interoperate with one another, taking full advantage of inheritance, polymorphism,
exceptions, and other features. However, languages are not made equal because one language may
support a feature that is totally different from another language. For example, Managed C++ is case-
sensitive, and VB.NET is not. In order to bring everyone to the same sheet of music, Microsoft has
published the Common Language Specification (CLS). The CLS specifies a series of basic rules that
are required for language integration. Since Microsoft provides the CLS that spells out the minimum

36

.NET Framework Essentials
requirements for being a .NET language, compiler vendors can build their compilers to the

specification and provide languages that target .NET. Besides compiler writers, application developers
should read the CLS and use its rules to guarantee language interoperation®%

[101 search MSDN Online for "Collected CLS Rules,” and you will see a list of rules that .NET compiler writers and application developers
should follow. In .NET SDK Beta 2, you can find the Common Language Infrastructure (CLI) Working Document that has been submitted
to ECMA. This documents covers the Common Intermediate Language (CIL), CLI, CLS, CTS, and more.

2.7 CLR Execution

Now that you understand the elements of a .NET executable, let's talk about the services that the CLR
provides to support management and execution of .NET assemblies. There are many fascinating
components in the CLR, but for brevity, we will limit our discussions to just the major components, as

shown in Figure 2-4.
Figure 2 4. Major CLR components: the Virtual Execution Engine (VEE)
.NET PE Files (metadato and IL)

 CLR's Virtval Execution Engine S

Class Looder
JIT Compilers
; I Verifier I :
| | I |
i Managed Native Code '

Execution support and manogement

Gorbage collector, security enging, code monager,
exceplion manager, thread suppart, efc.

The major components of the CLR include the class loader, verifier, JIT compilers, and other
execution support, such as code management, security management, garbage collection, exception
management, debug management, marshaling management, thread management, and so on. As you
can see fromFEigure 2-4, your .NET PE files layer on top of the CLR and execute within the CLR's
Virtual Execution Engine (VEE), which hosts the major components of the runtime. Your .NET PE files

will have to go through the class loader, the type verifier, the JIT compilers, and other execution
support components before they will execute.

2.7.1 Class Loader

When you run a standard Windows application, the OS loader loads it before it can execute. At the
time of this writing, the default loaders in the existing Windows operating systems, such as Windows
98, Windows Me, Windows 2000, and so forth, recognize only the standard Windows PE files. As a
result, Microsoft has provided an updated OS loader for each of these operating systems that support
the .NET runtime. The updated OS loaders know the .NET PE file format and can handle the file
appropriately.

When you run a .NET application on one of these systems that has an updated OS loader, the OS
loader recognizes the .NET application and thus passes control to the CLR. The CLR then finds the
entry point, which is typically Main(), and executes it to jumpstart the application. But before Main()
can execute, the class loader must find the class that exposes Main() and load the class. In addition,

37

when Main() instantiates an object of a specific class, the class loader also kicks in. In short, the class
loader performs its magic the first time a type is referenced.

The class loaderloads .NET classes into memory and prepares them for execution. Before it can
successfully do this, it must locate the target class. To find the target class, the class loader looks in
several different places, including the application configuration file (.config) in the current directory, the
GAC, and the metadata that is part of the PE file, specifically the manifest. The information that is
provided by one or more of these items is crucial to locating the correct target class. Recall that a
class can be scoped to a particular namespace, a namespace can be scoped to a particular assembly,
and an assembly can be scoped to a specific version. Given this, two classes, both named Car, are
treated as different types even if the version information of their assemblies are the same.

Once the class loader has found and loaded the target class, it caches the type information for the
class so that it doesn't have to load the class again for the duration of this process. By caching this
information, it will later determine how much memory is needed to allocate for the newly created
instance of this class. Once the target class is loaded, the class loader injects a small stub, like a
function prolog, into every single method of the loaded class. This stub is used for tw o purposes: to
denote the status of JIT compilation and to transition between managed and unmanaged code. At this
point, if the loaded class references other classes, the class loader will also try to load the referenced
types. However, if the referenced types have already been loaded, the class loader has to do nothing.
Finally, the class loader uses the appropriate metadata to initialize the static variables and instantiate
an object of the loaded class for you.

2.7.2 Verifier

Scripting and interpreted languages are very lenient on type usages, allowing you to write code
without explicit variable declarations. This flexibility can introduce code that is extremely error-prone
and hard to maintain, and that is often a culprit for mysterious program crashes. Unlike scripting and
interpreted languages, compiled languages require types to be explicitly defined prior to their use,
permitting the compiler to ensure that types are used correctly and the code will execute peacefully at
runtime.

The key here is type safety, and it is a fundamental concept for code verification in .NET. Within the
VEE, the verifier is the component that executes at runtime to verify that the code is type safe. Note
that this type verification is done at runtime and that this is a fundamental difference between .NET
and other environments. By verifying type safety at runtime, the CLR can prevent the execution of
code that is not type safe and ensure that the code is used as intended. In short, type safety means
more reliability.

Let's talk about where the verifier fits within the CLR. After the class loader has loaded a class and
before a piece of IL code can execute, the verifier kicks in for code that must be verified. The verifier is
responsible for verifying that:

The metadata is well formed, meaning the metadata must be valid.
The IL code is type safe, meaning type signatures are used correctly.

Both of these criteria must be met before the code can be executed because JIT compilation will take
place only when code and metadata have been successfully verified. In addition to checking for type

safety, the verifier also performs rudimentary control-flow analysis of the code to ensure that the code
is using types correctly. You should note that since the verifier is a part of the JIT compilers, it kicks in
only when a method is being invoked, not when a class or assembly is loaded. You should also note

that verification is an optional step because trusted code will never be verified but will be immediately
directed to the JIT compiler for compilation.

.NET Framework Essentials
2.7.3JIT Compilers

JIT compilers play a major role in the .NET platform because all .NET PE files contain IL and metadata,
not native code. The JIT compilers convert IL to native code so that it can execute on the target
operating system. For each method that has been successfully verified for type safety, a JIT compiler
in the CLR will compile the method and convert it into managed native code. Managed native code is
required because the execution -support components will manage and execute only managed code on
the target operating system.

One advantage of a JIT compiler is that it can dynamically compile code that is optimized for the target
machine. If you take the same .NET PE file from a oneeCPU machine to a two-CPU machine, the JIT
compiler on the two-CPU machine knows about the second CPU and may be able to spit out the
native code that takes advantage of the second CPU. Another obvious advantage is that you can take
the same .NET PE file and run it on a totally different platform, w hether it be Windows, Unix, or
whatever, as long as that platform has a CLR.

For optimization reasons, JIT compilation occurs only the first time a method is invoked. Recall that
the class loader adds a stub to each method during class loading. At the first method invocation, the
VEE reads the information in this stub, which tells it that the code for the method has not been JIT
compiled. At this indication, the JIT compiler compiles the method and injects the address of the
managed native method into this stub. During subsequent invocations to the same method, no JIT
compilation is needed because each time the VEE goes to read information in the stub, it sees the
address of the native method. Because the JIT compiler only performs its magic the first time a
method is invoked, the methods you don't need at runtime will never be JIT compiled.

The compiled, native code lies in memory until the process shuts down and until the garbage collector

clears off all references and memory associated with the process. This means that the next time you
execute the process or component, the JIT compiler will again perform its magic.

If you want to avoid the cost of JIT compilation at runtime, you can use a special tool called ngen,
which compiles your IL during installaton and setup time. Using ngen, you can JIT-compile the code
once and cache it on the machine so that you can avoid JIT compilation at runtime (this process is
referred to as pre-JITting). In the event that the PE file has been updated, you must PreJIT the PE file
again. Otherwise, the CLR can detect the update and dynamically command the appropriate JIT
compiler to compile the assembly.

2.7.4 Execution Support and Management

By now, you should see that every component in the CLR that we've covered so far uses metadata
and IL in some way to successfully carry out the services that it supports. In addition to the provided
metadata and generated managed code, the JIT compiler must generate managed data that the code
manager needs to locate and unwind stack frames. The code manager uses managed data to
control the execution of code, including performing stack walks that are required for exception
handling, security checks, and garbage collection. Besides the code manager, the CLR also provides

a number of important execution-support and management services. A detailed discussion of these
services is beyond the scope of this book, so we will briefly enumerate a few of them here:

0 By the way, you can write a custom JIT compiler or a customer code manager for the CLR because the CLR supports the plug-and
play of these components.

Garbage collection

Unlike C++, where you must delete all heap-based objects manually, the CLR supports
automatic lifetime management for all .NET objects. The garbage collector can detect when
your objects are no longer being referenced and perform garbage collection to reclaim the
unused memory.

Exception handling

39

Prior to .NET, there was no consistent method for error or exception handling, causing lots of
pain in error handling and reporting. In .NET, the CLR supports a standard exception-handling
mechanism that works across all languages, allowing every program to use a common error -
handling mechanism. The CLR exception-handling mechanism is integrated with Windows
Structured Exception Handling (SEH).

Security support

The CLR performs various security checks at runtime to make sure that the code is safe to
execute and that the code is not breaching any security requirements. In addition to

supporting code-access security, the security engine also supports declarative and imperative
security checks. Declarative security requires no special security code, but you have to specify
the security requirements through attributes or administrative configuration. Imperative
security requires that you write the code in your method to specifically cause security checks.

Debugging support

The CLR provides rich support for debugging and profiling. There is an API that compiler
vendors can use to develop a debugger. This API contains support for controlling program
execution, breakpoints, exceptions, control flow, and so forth. There is also an API for tools to
support the profiling of running programs.

Interoperation support

The CLR supports interoperation between the managed (CLR) and unmanaged (no CLR)
worlds. The COM Interop facility serves as a bridge between COM and the CLR, allowing a
COM obiject to use a .NET object, and vice versa. The Platform Invoke (P/Invoke) facility
allows you to call Windows API functions.

This is by no means an exhaustive list. The one thing that we want to reiterate is that like the class
loader, verifier, JIT compilers, and just about everything else that deals with .NET, these execution-
support and management facilities all use metadata, managed code, and managed data in some way
to carry out their services.

2.8 Summary

As you can see from this chapter, the .NET architecture strives to support language integration and
componentization in every way that makes sense. Thanks to metadata, programming becomes much
easier because you no longer have to worry about the registry for component deployment and other
kinks (such as CoCreatelnstanceEx, CLSIDs, IIDs, IlUnknown, IDL, and so forth) in order to support
componentization. Thanks to the CTS, CLS, metadata, and IL, you now have real language integration.
At the time of this writing, Microsoft has shipped a CLR for several flavors of Windows only, but itis
conceivable that someone will ship a CLR for another platform soon. When this happens, .NET will be
a multilanguage and multiplatform architecture.

.NET Framework Essentials

41

Chapter 3. .NET Programming

Now that you know what .NET is all about, let's talk about programming for the .NET environment.
This chapter presents the common programming model that .NET provides, core languages and

features that .NET supports, and language integration—how you can take advantage of object-
oriented features even across different languages that .NET enables.

3.1 Common Programming Model

Without the .NET Framework, programmers must choose from amongst a wealth of APIs or libraries
that support system services. For example, if you want to write GUI applications on Windows, you
have a slew of options from which to choose, including the Win32 API, MFC, ATL, VB, and so on.
Once you've chosen the library, you have to learn how to use the structures, classes, functions,
interfaces, and so forth that the library provides. Unfortunately, this knowledge doesn't transfer directly
into a different environment. For instance, there's a big difference between the code to manage 1O in
MFC and the code to manage 10 in VB.

One of the goals of the .NET Framework is to bring commonality to application development by
providing a framework of common classes to developers who are using compilers that generate IL.
This common framework is extremely helpful: if you know how to take advantage of 1O functionality

in .NET using your favorite language, you can easily port that code to another language. This is
possible because the namespaces, classes, methods, and so forth have a consistent representation in
all languages. For example, you can output a line of text to the console the same way across all .NET
languages by using the WriteLine() method of the Console object, as we have seen elsewhere in this
book. This consistent framework requires less development training and enables higher programmer
productivity.

Since a full discussion of the entire set of classes in the .NET Framework is beyond the scope of this
book (see O'Reilly's forthcoming .NET in a Nutshell series, 2001), we specifically talk about the

System.Object class and present to you the major namespaces in the .NET Framework, opening the
doors for you to ste p into this world.

3.1.1 System.Object

Every type in .NET is an object, meaning that it must derive directly or indirectly from the Object class.
If you don't specify a base class when you define a class, the compiler will inject this requirement into
the IL code. The Object class supports a commonality that all .NET classes inherit and thus
automatically provide to their consumers. The Object class exposes the public methods listed in Table
3-1, which you can invoke on any given .NET object at runtime.

Table 3-1. Public methods of the Object class

Methods Description

Compares two object references and determines whether they are referring to the

Equals() same object.

Gets the object's hash code. In .NET, hash codes are used as an added mechanism
for determining object uniqueness at runtime. For instance, if you want your objects
to be used as keys in a hash table, you must override this function and provide a
unigue hash value for each instance of your class.

GetHashCode()

Obtains the object's type at runtime. Once you have obtained the object's type, you
GetType() can obtain everything about that type using the Reflection API, as explained in

Chapter 2.

Gets a string representation of the object. Normally used for debugging purposes,

ToString() this method spits out the fully qualified class nhame by default.

42

.NET Framework Essentials

Examine the following program, which illustrates the use of all these methods:

usi ng System
nanespace Cpm

{
cl ass CPModel

{
public static void Main()

{
CPModel ¢ = new CPModel ();
/'l Test for self equival ence
Consol e. Wi teLi ne("Equi val ence: \t" +
c. Equal s(c)

)// Get the hash code fromthis object
Consol e. WitelLine("CObject hash:\t" +
c. GCet HashCode()
)// Use the type to obtain nethod information
Consol e. WiteLine("Object nmethod: \t" +
c. Cet Type(). GetMethods()[1]

)// Convert the object to a string
Consol e. WiteLine("Object dunp:\t" +
c. ToString()
)
}
}
}

If you compile and run this C# program, you get the following output:

Equi val ence: True

hj ect hash: 3

Obj ect nethod: Bool ean Equal s(System Cbj ect)
bj ect dunp: Cpm CPModel

The boldface line displays the second method of the CPModel class. If you look back at the program's
code, you'll see that we use the GetType() method to get the type, and then we use the GetMethods()

method to retrieve the array of methods supported by this type. From this array, we pull off the second
method, which happens to be Equals(), a method that's implemented by System.Object.

As you can see, the System.Object class provides a mechanism for runtime type identification,
equivalence, and inspection for all .NET objects.

3.1.2 Major Namespaces

Table 3-2 provides a short list of important namespaces and classes in the .NET Framework that
provide support for almost any application that you will develop. These are the namespaces that you'll
find yourself using again and again the more you develop .NET applications. For more information,
consult MSDN Online or your SDK documentation, as a detailed discussion of these namespaces and
classes is beyond the scope of this book.

Table 3-2. Important .NET namespaces and classes

Namespace Description
System Includes basic classes that almost every program will use. Some simple

classes that belong in this namespace are Object, Char, String, Array, and
Exception. This namespace also includes more advanced classes such as
GC and AppDomain.

Provides a set of classes to support synchronous and asynchronous 10
manipulation for data streams. Also provides classes that allow you to
System.|O manipulate the filesystem, such as by creating, managing, and deleting files
and directories. Some of these classes are FileS tream, MemoryStream,
Path, and Directory.

Includes a set of classes that allow you to manage collections of objects.
System.Collections Some of these classes are ArrayList, DictionaryBase, Hashtable, Queue, and
Stack.

Includes a set of classes that support multithreaded programming. Some of

System.Threadin
y N9 these classes are Thread, ThreadPool, Mutex, and AutoResetEvent.

Includes a set of classes that support dynamic binding and type inspection.

System.Reflection Some of these classes are Assembly, Module, and MethodInfo.

Includes a set of classes and child namespaces that provide security
System.Security support. The interesting child namespaces include Cryptography,
Permissions, Policy, and Principal.

Includes a set of classes and child namespaces that provide support for
System.Net network programming. Some of these classes are IPAddress, Dns,
Connection, and HttpWebRequest.

System.Data See Chapter 5.
System.Web.Services |See Chapter 6.
System.Web.UI See Chapter 7.

System.Windows.Forms|See Chapter 8.

Again, keep in mind that if you know how to use any of the classes in these namespaces, you can
write the code to take advantage of them in any language because the class and method names
remain consistent across all .NET languages.

3.2 Core Features and Languages

Since one of .NET's goals is to support a common paradigm for application programming, it must
specify and utilize programming concepts consistently. In this section, we will examine three core
Microsoft .NET languages, including Managed C++, VB.NET, and C#, and several core programming
concepts that all .NET languages support, including:

Namespace
Mitigates name collisions.
Interface

Specifies the methods and properties that must be implemented by objects that expose the
interface.

Encapsulation
In object-oriented languages, allows a class to encapsulate all its data and behavior.
Inheritance

Allows a class to inherit from a parent class so that it can reuse rich functionality that the
parent class has implemented, thus reducing development effort and programming errors.

.NET Framework Essentials

Polymorphism

Permits developers to specify or implement behaviors in a base class that can be overridden

by a derived class. This is a very powerful feature because it allows developers to select the
correct behavior based on the referenced runtime object.

Exception handling

Allows us to write easier-to-understand code because it allows us to capture all errors in a

common, unde rstandable pattern—totally opposite to that of nine levels of nested conditional
blocks.

While this is not a complete list of concepts that .NET supports, it includes all the major .NET concepts
that we want to cover in this section. We will show you examples of all these features in Managed C++,

VB.NET, and C#. These concepts are nothing new: we're merely demonstrating how they're
represented in all .NET languages.

Before we start, you should understand first what our examples will accomplish. First, wewill create a
namespace, called Lang, that encapsulates an interface, ISteering. Then we will create two classes:
Vehicle, which is an abstract base class that implements ISteering, and Car, which is a derivative of

Vehicle. We will support an entry point that instantiates and uses Car within at r y block. We will
unveil other details as we work through the examples.

3.2.1 Managed C++ Code

Managed C++ is essentially Microsoft's C++ programming language with some newly added keywords
and features to support .NET programming. This allows you to use C++ to develop managed objects,
which are objects that run in the CLR. Using Managed C++, you can obtain the performance™ that is
inherent in C++ programs, and at the same time, you can also take advantage of CLR features{2l

['you can easily mix managed and unmanaged code in C++ programs. The unmanaged code will perform better.

21 However, if you look carefully at the features and new keywords (_abstract, box, delegate, gc, nogc,
_pi n, etc.) that have been added to Microsoft C++, we doubt that you'll want to use Managed C++ to write new code for the CLR,
especially when you have C#.

Now let's look at an example that includes all the concepts we want to examine. As you can see in the
following code listing, we start off creating a new namespace, Lang, which envelops everything except
main(). With the exception of the first two lines and special keywords, the code listing conforms
perfectly to the C++ standard:

#using <mscorlib.dll>
usi ng nanespace System

nanespace Lang

{

Next, we specify an interface, called ISteering. If you are a C++ programmer, you will immediately
notice that there are two new keywords in the following code listing, gc and i nterface. The
new keyword i nt er f ace allows you to declare an interface, which is basically equivalent to an
abstract base class in C++. In other words, the two method prototypes are specified, but not

implemented here. The class that implements this interface provides the implementation for these
methods:

_ _gc _ _interface | Steering

{
void TurnLeft();

void TurnRight();
H

If you are a COM programmer, you know that in COM you have to manage the lifetimes of your

objects and components yourself. Even worse, you also have to rely on your clients to negotiate and
interoperate correctly with your COM components, otherwise extant references will never be reclaimed.
Managed C++ removes this problem by adding a new keyword, ~ _gc . This new keyword tells the
CLR to garbage -collect the references to your interface when they are no longer in use. Aside from
these two keywords, the previous code listing requires no other explanation for programmers who

have experience with C-like languages.

Now that we have an interface, let's implement it. The following code listing is a Managed C++ class
(as indicated by the _gc) that implements our ISteering interface. One thing to notice is that this
class is an abstract base class because the ApplyBrakes() method is a pure virtual (meaning that it's

polymorphic) function, as indicated by the =0 syntax. Vehicle doesn't provide the implementation for
this method, but its derived class must supply the implementation:

_gc class Vehicle : public I Steering

{
public:
void TurnLeft()
{
Consol e:: WiteLine("Vehicle turns left.");
}
void TurnRight()
{
Consol e: : WitelLine("Vehicle turns right.");
}
virtual void ApplyBrakes() = 0;

I

Since Vehicle is an abstract base class and can't be instantiated, we need to provide a Vehicle
derivative, which we will call Car. As you can see in the following listing, everything about the class is
C++, with the exception of the keyword ~ gc. Note that the ApplyBrakes() function first dumps a text
message to the console and then immediately creates and throws an exception, notifying an exception
handler that there has been a brake failure. What is special here is that the Exception class is a part of
the .NET Framework, specifically belonging to the System namespace. This is great, because this
class works exactly the sam e way in all languages and there's no longer a need to invent your own
exception hierarchy.

_gc class Car : public Vehicle

{
public:
voi d Appl yBrakes()
{
Consol e:: WitelLine("Car trying to stop.");
t hrow new Exception("Brake failure!");
}
b

} /'/ This brace ends the Lang nanespace.

.NET Framework Essentials

Now that we have a concrete class, we can write the main() function to test our Car class. You'll
notice that we have added at r y block that encapsulates the bulk of our code so that we can handle
any exceptions in thecat ch block. Looking carefully at the following code listing, you'll see that we've
instantiated a new Car on the managed heap, but we've actually referred to this Car instance using a
Vehicle pointer. Next, we tell the vehicle to TurnLeft(}—there's no surprise here because we've
implemented this method in Vehicle. However, in the following statement, we tell the Vehicle that we're
applying the brakes, but ApplyBrakes() is not implemented in Vehicle. Since this is a virtual method,
the correctvpt r and vt bl B will be used, resulting in a call to Car::ApplyBrakes(). Of course
Car::ApplyBrakes() will throw an exception, putting us into thecat ch block. Inside thecat ch block,
we convert the caught exception into a string and dump it out to the console. We can do this because

Exception is a class in the .NET Framework and all classes in the framework must derive from
System.Object, which implements a rudimentary ToString() function to convert any object into a string:

31 Many C++ compilers use vt bl s (a vt bl is a table of function pointers) and vptrs (a vpt r is a pointer to the vt bl) to support
dynamic binding or polymorphism.

void main()

{
try
{
Lang:: Vehicle *pV = 0; /'l namespace qualifier
pV = new Lang::Car(); /'l pV refers to a car
pV->TurnLeft(); /1 interface usage
pV- >Appl yBrakes(); /1 pol ynmorphismin action
}
cat ch(Exception *pe)
{
Consol e: : Wi telLine(pe->ToString());
}
}

Notice that you don't have to deallocate your objects on the managed heap when you've finished using
them, because the garbage collector will do that for you in .NET.

Although this is a simple example, we have used Managed C++ to illustrate all the major .NET
concepts, including namespaces, interfaces, encapsulation, inheritance, polymorphism, and exception
handling. Next, we demonstrate that you can translate this code into any other .NET language

because they all support these concepts. Specifically, we'll show you this same example in VB.NET,
C#, and IL, just to prove that these concepts can be represented the same way in all .NET languages.

3.2.2 VB.NET Code

Microsoft has revamped VB and added full features for object-oriented programming. The new VB
language, VB.NET, allows you to do all that you can with VB, albeit much more easily. If you are a VB
programmer with knowledge of other object-oriented languages, such as C++ or Smalltalk, then you
will love the new syntax that comes along with VB.NET. If you are a VB programmer without
knowledge of other object-oriented languages, you will be surprised by the new VB.NET syntax at first,
but you will realize that the new syntax is there to simplify your life as a programmer.

In addition to the VB-style Rapid Application Development (RAD) support, VB.NET is a modernized
language that gives you full access to the .NET Framework. The VB.NET compiler generates
metadata and IL code, making the language an equal citizen to that of C# or Managed C++. Unlike VB,

there will be no interpreter in VB.NET, so there should be no violent arguments about performance
drawbacks of VB versus another language.

Perhaps the most potent feature is that now you can write interfaces and classes that look very similar
to those written in other .NET languages. The new syntax allows you to inherit from base classes,
implement interfaces, override virtual functions, create an abstract base class, and so forth. In addition,

47

it alsosupports exception handling exactly as does C# and Managed C++, making error handling
much easier. Finally, VB.NET ships with a command-line compiler, vbc.exe, introduced inChapter 2.

Let's see how to translate the previous Managed C++ program into VB.NET so that you can see the
striking conceptual resemblance. First, we'll start by defining a namespace called Lang, as shown here
in bold:

| nports System

Namespace Lang

Nex, we specify the ISteering interface, which is extremely easy to do in VB.NET since the syntax is
very straightforward, especially when you compare it with Managed C++. In the following code listing,
you'll notice that instead of using opening and closing braces as in Managed C++, you start the
interface definition by using the appropriate VB.NET keyword, Interface, and end it by prefixing the
associated keyword with the word End. This is just normal VB -style syntax and shouldn't surprise any
VB programmer.

Interface | Steering
Sub TurnLeft()
Sub TurnRight()

End I nterface

With our interface specified, we can now implement it. Since our Vehicle class is an abstract base
class, we must add the Mustinherit keyword when we define it, explicitly telling the VB.NET compiler
that this class cannot be instantiated. In VB.NET, the Class keyword allows you to define a class, and
the Implements keyword allows you implement an interface. Another thing that you should be aware of

is that ApplyBrakes() is notimplemented in this class, and we have appropriately signaled this to the
VB.NET compiler by using the MustOverride keyword.

Must I nherit Cl ass Vehicle
| npl ements | Steering

Public Sub TurnLeft() Inplenents |Steering. TurnLeft
Consol e. WiteLine("Vehicle turns left.")
End Sub

Public Sub TurnRight() Inplenents |Steering. TurnRi ght
Console. WiteLine("Vehicle turn right.")
End Sub

Publi c MustOverride Sub ApplyBrakes()

End Cl ass

As far as language differences go, you must explicitly describe the access (i.e., publ i ¢, private,
and so forth) for each method separately. This is different from C++ because all members take on the
previously defined access type.

Now we are ready to translate the concrete Car class. In VB.NET, you can derive from a base class by
using the | nher i t s keyword, as shown in the following code. Since we have said that ApplyBrakes()
must be overridden, we provide its implementation here. Again, notice that we're throwing an
exception.

Cl ass Car
I nherits Vehicle

.NET Framework Essentials

Public Overrides Sub ApplyBrakes()
Console. WitelLine("Car trying to stop.")
t hrow new Exception("Brake failure!")
End Sub

End Cl ass

End Nanespace

Now that we have all the pieces in place, let's define a module with an entry point, Main(), that the
CLR will execute. In Main(), you'll notice that we're handling exceptions exactly as we did in the
Managed C++ example. You should also note that this code demonstrates the use of polymorphism
because we first create a Vehicle reference that refers to a Car object at runtime. We tell the Vehicle
to ApplyBrakes(), but since the Vehicle happens to be referring to a Car, the object that is stopping is
the target Car object.

Public Modul e Driver

Sub Main()
Try
Dimv As Lang.Vehicle ' nanmespace qualifer
v = New Lang. Car " v refers to a car
v. TurnLeft() " inteface usage
v. Appl yBrakes() " pol ynmorphismin action

Catch e As Exception
Consol e. WiteLine(e. ToString())
End Try
End Sub

End Modul e

This simple program demonstrates that we can take advantage of all the .NET object-oriented features
using VB.NET. Having seen this example, you should see that VB.NET is very object oriented, with
features that map directly to those of Managed C++ and other .NET languages.

3.2.3 C# Code

As you've just seen, VB.NET is a breeze compared to Managed C++, but VB.NET is not the only
simple language in .NET—C# is also amazingly simple. Developed from the ground up, C# supports
all the object-oriented features in .NET. It maps so closely to the Java and C++ languages that if you
have experience with either of these languages, you can pick up C# and be productive with it
immediately.

Microsoft has developed many tools using C#; in fact, most of the components in Visual Studio.NET
were developed using C#. Microsoft is using C# extensively, and we think that C# will be the language
of the next decade !

141 ¢ you want to learn more about C#, check out O'Reilly's C# Essentials (Albahari, Drayton, and Merrill, 2001), C# in a Nutshell
(Drayton and Albahari, 2001), and Programming C# (Liberty, 2001).

Having said that, let's translate our previous program into C# and illustrate all the features we want to
see. Again, first we start by defining a namespace. As you can see, the syntax for C# maps really
closely to that of Managed C++.

49

usi ng System

namespace Lang

{

Following is the IStreering interface specification in C#. Since C# was developed from scratch, we

don't need to add any funny keywords, suchas ~_gc and _ _interface, aswe didin the
Managed C++ version of this program.

interface | Steering

void TurnLeft();
void TurnRight();

}

Having defined our interface, we can now implement it in the abstract Vehicle class. Unlike Managed
C++ but similar to VB.NET, C# requires that you explicitly notify the C# compiler that the Vehicle class
is an abstract base class by using the abst r act keyword. Since ApplyBrakes() is an abstract
method—meaning that this class doesn't supply its implementation—you must make the class abstract,
otherwise the C# compiler will barf at you. Put another way, you must explicitly signal to the C#
compiler the features you want, including abstract , publ i c,pri vat e, and so forth, each time you
define a class, method, property, and so on.

abstract class Vehicle : |Steering
{
public void TurnLeft()
{
Consol e. WiteLine("Vehicle turns left.");
}
public void TurnRight()
{
Consol e. WiteLine("Vehicle turn right.");
}
public abstract void ApplyBrakes();

}

Here's our Car class that derives from Vehicle and overrides the ApplyBrakes() method declared in
Vehicle. Note that we are explicitly telling the C# compiler that we are indeed overriding a method
previously specified in the inheritance chain. You must add the override modifier, or ApplyBrakes() will
hide the one in the parent class. Otherwise, we are also throwing the same exception as before.

class Car : Vehicle

{
public override void ApplyBrakes()
{
Consol e. WiteLine("Car trying to stop.");
t hrow new Exception("Brake failure!");
}
}

} /1 This brace ends the Lang namespace.

Finally, here's a class that encapsulates an entry point for the CLR to invoke. If you look at this code
carefully, you'll see that it maps directly to the code in both Managed C++ and VB.NET.

.NET Framework Essentials

class Drive

{
public static void Main()
{
try
Lang. Vehicle v = null; // namespace qualifer
v = new Lang.Car(); /'l v refers to a car
v. TurnLeft(); /1 interface usage
v. Appl yBrakes(); /'l pol ymor phi smin action
catch(Exception e)
{
Consol e. WiteLine(e. ToString());
}
}
}

There are two other interesting things to note about C#. First, unlike C++ but similar to Java, C#
doesn't use header files Bl Second, the C# compiler generates XML documentation for you if you use
XML comments in your code. To take advantage of this feature, start your XML comments with three
slashes, as in the following examples:

=1 If you've never used C++, a header file is optional and usually contains class and type declarations. The implementation for these
classes is usually stored in source files.

/11 <summary>Vehicl e Cl ass</summary>
/1] <remar ks>
/11 This class is an abstract class that nust be

111 overriden by derived cl asses.
1] <lremarks>

abstract class Vehicle : |Steering
{

/1] <summary>Add juice to the vehicle.</sumary>
/1l <param name="gal | ons" >

11 Number of gall ons added.

/1l </paran>

1l <return>Whether the tank is full.</return>
public bool FillUp(int gallons)

{

}
}

return true;

These are simple examples using the predefined C# tags. You can also use your own XML tags in
XML comments, as long as your resulting XML is well formed. Given that you have a source code file
with XML comments, you can automatically generate an XML -formatted reference document by using

the C# compiler's / doc: option, as follows:
csc /doc: doc. xml nyl angdoc. cs

Although we didn't specify the types of our parameters in the XML comments shown previously, the
C# compiler will detect the correct types and add the fully qualified types into the generated XML
document. For example, the following generated XML listing corresponds to the XML comments for

the FillUp() method. Notice that the C# compiler added System.Int32 into the generated XML
document.

<nenber nanme="M Lang. Vehicle.FillUp(System Int32)">
<sunmary>Add juice to the vehicle.</sumary>
<param nane="gal | ons" >

51

Nunber of gall ons added.
</ par an®
<return>Whether the tank is full.</return>
</ menber >

Now that you have the generated XML document, you can write your own XSL document to translate
the XML into any visual representation you prefer.

3.2.4 Common Intermediate Language Code

Since all languages compile to IL, let's examine the IL code for the program that we've been studying.
As explained in Chapter 2 , IL is a set of stack-based instructions that supports an exhaustive list of

popular object-oriented features, including the ones that we've already examined in this chapter. It is
an intermediary step, gluing .NET applications to the CLR.

Let's start by looking at the namespace declaration. You'll notice that the . nanespace IL declaration
allows us to create our Lang namespace. Similar to C#, IL uses opening and closing braces:

. hamespace Lang

{

Now for the IStreering interface. In IL, any type that is to be managed by the CLR must be declared
using the . cl ass IL declaration. Since the CLR must manage the references to an interface, you
must use the . cl ass IL declaration to specify an interface in IL, as shown in the following code listing:

.class interface private abstract auto ansi | Steering

{

. met hod public hidebysig newslot virtual abstract
i nstance void TurnLeft() cil managed

{

} /1 end of nethod |Steering:: TurnLeft

. met hod public hidebysig newslot virtual abstract
i nstance void TurnRight() cil managed

{

} /1 end of nethod |Steering:: TurnRi ght

} /1 end of class |Steering
In addition, you must insert two special IL attributes:
interface
Signals that the current type definition is an interface specification.
abstract

Signals that there will be no method implementations in this definition and that the

implementer of this interface must provide the method implementations for all methods
defined in this interface.

Other attributes shown in this definition that aren't necessarily needed to specify an interface in IL
include the following:

private

52

.NET Framework Essentials

Because we haven't provided the visibility of our interface definition in C#, the generated IL
code shown here adds thepr i vat e IL attribute to this interface definition. This means that
this particular interface is visible only within the current assembly and no other external
assembly can see it.

auto
This tells the CLR to perform automatic layout of this type at runtime.
ansi

This tells the CLR to use ANSI string buffers to marshal data across managed and
unmanaged boundaries.

Now you know how to specify an interface in IL. Before we proceed further, let's briefly look at the
attributes in the . net hod declarations—at least the attributes that we haven't examined, including:

newslot

Tells the JIT compiler to reserve a new slot in the type'svi bl , which will be used by the CLR
at runtime to resolve virtual-method invocations.

instance

Tells the CLR that this method is an instance or objectlevel method, as opposed to a static or
classdevel method.

Having specified the ISteering interface in IL, let's implement it in our Vehicle class. As you can see in
the following code fragment, there's no surprise. We extend the System.Object class (indicated by the
ext ends keyword) and implement Lang.ISteering (as indicated by thei npl enent s keyword):

.class private abstract auto ansi Vehicle
extends [nmscorlib] System Ohj ect
i mpl enents Lang. | Steering

{

. met hod public hidebysig newslot final virtual
i nstance void TurnLeft() cil managed
{
/1 1L code onmtted for clarity.
} /1 end of method Vehicle:: TurnLeft

. met hod public hidebysig newslot final virtual
i nstance void TurnRight() cil managed

/1 1L code omtted for clarity.
} // end of nethod Vehicle:: TurnRi ght

.method public hidebysig newslot virtual abstract
i nstance void ApplyBrakes() cil managed

{
} // end of method Vehicle:: Appl yBrakes

/1 .ctor omtted for clarity.

} /1 end of class Vehicle

Notice also that this class is an abstract class and that the ApplyBrakes() method is an abstract
method, similar to what we've seen in the previous examples. Another thing to note is thef i nal IL

attribute that you see in the. net hod declarations for both TurnLeft() and TurnRight(). This IL
attribute specifies that these methods can no longer be overridden by subclasses of Vehicle. Having
seen all these attributes, you should realize that everything in IL is explicitly declared so that all
components of the CLR take advantage of this information to manage your types at runtime.

Now let's look at the Car class that derives from the Vehicle class. You'll notice that in the
ApplyBrakes() method implementation, thenewobj i nst ance IL instruction creates a new instance

of the Exception class. Next, the t hr ow IL instruction immediately raises the exception object just
created.

.class private auto ansi Car
ext ends Lang. Vehicl e
{

. met hod public hidebysig virtual instance void
Appl yBrakes() cil managed
{

/1 1L code omtted for clarity.
newobj instance void

[mscorlib] System Exception::.ctor(class System String)
t hr ow

} /1 end of method Car:: Appl yBrakes
/] .ctor omtted for clarity.
} /1 end of class Car

} // end of nanespace Lang

Finally, let's look at our Main() function, which is part of the Drive class. We've removed most of the IL
code—which you've already learned—from this function to make the following code easier to read, but
we kept the important elements that must be examined. First, the. | ocal s directive identifes all the
local variables for the Main() function. Second, you can see that IL also supports exception handling
through the. t r y instruction. In both the. t r y and cat ch block, notice that there isal eave. s
instruction that forces execution to jump to the IL instruction on line | L_0024, thus leaving both

the. try andcat ch blocks.

.class private auto ansi Drive
extends [nscorli b] System Obj ect
{
.method public hidebysig static void Main() cil managed
{
.entrypoi nt
/1 Code size 37 (0x25)
.maxstack 1
.locals (class Lang.Vehicle V_O,
class [nscorlib] System Exception V_1)

.try

{
/1 1L code omitted for clarity.
| eave. s I L_0024

} I/ end .try
catch [nscorlib] System Exception

{

/1 1L code omtted for clarity.
| eave. s I L_0024

} // end handl er
IL_0024: ret

} /1 end of nethod Drive:: Min

/] .ctor omtted for clarity.

.NET Framework Essentials

} /1l end of class Drive

As you can see, all the major concepts that we've examined intinsically apply to IL. Since you've seen
Managed C++, VB.NET, C#, and IL code that support these features, we won't attempt to further
convince you that all these features work in other .NET languages.

3.3 Language Integration

In the previous section, wesaw that you can take advantage of .NET object-oriented concepts in
any .NET language. In this section, we show that you can take advantage of language integration —
the ability to derive a class from a base that is specified in a totally different language, or to catch

exceptions thrown by code written in a different language, or to take advantage of polymorphism
across different languages, and so forth.

Before we discuss the examples in this section, let's first understand what we want to accomplish (see
Figure 3-1). We will first use Managed C++ to develop a Vehicle class that is an abstract base class.
The Vehicle class exposes three polymorphic methods, including TurnLeft(), TurnRight(), and
ApplyBrakes(). We will then use VB.NET to develop a Car class that derives from Vehicle and
overrides these three virtual methods. In addition, we will use C# to develop the Plane class that
derives from Vehicle and overrides these three virtual methods.

Figure 3-1. Polymorphism across languages

Vehicle
(Managed (++) Polymarphic method: Turnleft

Cor Plane
(VB.NET) ()

In the upcoming code example, we can tell a Vehicle to TurnLeft() or TurnRig ht(), but what turns left
or right depends upon the target object, whether a Car or a Plane. Unlike the examples in the last
section, the examples here illustrate that we can inherit classes and call virtual functions from ones
that are defined in another language. In addition, we will demonstrate in our test program that
exception handling works across different languages.

3.3.1 Vehicle Class in Managed C++

Let's use Managed C++ to develop the Vehicle class, which is an abstract base class because
ApplyB rakes() is a pure virtual function. Vehicle implements the ISteering interface to support turning
left and turning right. Since the ApplyBrakes() function is a pure virtual function, any concrete
derivative of Vehicle must implement this method:

#usi ng<nscorlib.dl >
usi ng nanespace System

public _ _gc _ _interface |Steering
{

void TurnLeft();

void TurnRight();

}s

public _ _gc class Vehicle : public ISteering
: public:
virtual void TurnLeft()
{ Console::WiteLine("Vehicle turns left.");
}
virtual void TurnRight()
i Consol e:: WiteLine("Vehicle turn right.");

virtual void ApplyBrakes() = 0;
b

Given this abstract base class, we can create a DLL that hosts this definition. The first command here
shows how we use the Managed C++ compiler to compile (as indicated by the/ ¢ option) the

vehicle.cpp file, which contains the previous code. The second command shows how we use the C++
linker to create a DLL with metadata and IL code:

cl /CLR /c vehicle.cpp
link -dl'l /out:vehicle.dll -noentry vehicle. obj

Given just a few lines of Managed C++ code, we can build a DLL that can be used by another
component. Note that there is no need to provide code for the functions lUnknown,

DIlIGetClassObject(), DlICanUnloadNow(), DIIRegisterServer(), DllUnregisterServer(), and so forth.
In the old days, you had to provide code for these functions and interfaces for legacy COM DLLs.

3.3.2 Car Class in VB.NET

Given this abstract Vehicle class, the Car class can derive from it and provide the implementation for
the three virtual methods defined by Vehicle. In the following code, note that we've overridden and
provided the implementation for TurnLeft(), TurnRight(), and ApplyBrakes(). The ApplyBrakes()
method is special in that it throws an exception, which will be caught by code written in C#, as we'll
see later.

I nports System

Public Class Car
I nherits Vehicle

Overrides Public Sub TurnLeft()
Consol e. WiteLine("Car turns left.")
End Sub

Overrides Public Sub TurnRight()
Consol e. WiteLine("Car turns right.")
End Sub

Overrides Public Sub ApplyBrakes()
Consol e. WiteLine("Car trying to stop.")
t hrow new Exception("Brake failure!")
End Sub

End Cl ass

.NET Framework Essentials

With this code, we can build a DLL using the command-line VB.NET compiler, as follows:
vbc /r:vehicle.dll /t:library /out:car.dll car.vb

Since we want the VB.NET compiler to generate a DLL, we must signal this by usingthe/t: | i brary
option. Also, since Car derives from Vehicle, the VB.NET compiler must resolve the references to
Vehicle. We can tell the VB.NET compiler the location of external references using the/ r : option. It is
important to note that you don't need to have the source code for the vehicle DLL to reuse its code
because all type information can be obtained from any .NET assembly. In addition, you should note
that from this example, we have proven that you can derive a VB.NET class from a Managed C++
class.

3.3.3 Plane Class in C#

Now let's use C# to develop the Plane class, which derives from the Vehicle class written in Managed
C++. Similar to the Car class, the Plane class implements the three virtual functions from the Vehicle

class. Unlike the Car class, though, the ApplyBrakes() method of this class doesn't throw an
exception.

usi ng System

public class Plane : Vehicle

{
override public void TurnLeft()
{
Consol e. WiteLine("Plane turns left.");
}
override public void TurnRight()
{
Consol e. WiteLine("Plane turns right.");
}
override public void ApplyBrakes()
{
Consol e. WiteLine("Air brakes being used.");
}
}

You can build a DLL from this code using the following command:
csc /r:vehicle.dll /t:library /out:plane.dll plane.cs

Notice that we have used the/ r : option to tell the C# compiler that Vehicle is defined invehicle.dll.

3.3.4 Test Driver in C#

Having developed vehicle.dll, car.dll, and plane.dll, we are now ready to demonstrate that

polymorphism and exception handling work across different languages. Written in C#, the upcoming
code listing contains a Main() method with a Vehicle reference and an exception handler.

Inside thet r y block, we first instantiate a Plane class and refer to this instance using the local Vehicle
reference. Instead of telling the Plane to TurnLeft() or ApplyBrakes(), we tell the Vehicle to do so.
Similarly, we instantiate a Car and refer to this instance using the local Vehicle reference. Again,
instead of telling the Car to TurnLeft() or ApplyBrakes(), we tell the Vehicle to do s 0. In both cases,
we tell the Vehicle either to TurnLeft() or ApplyBrakes(), but the actual vehicle that employs

57

TurnLeft() or ApplyBrakes() is the Plane instance in the first case and the Car instance in the second
case; that's polymorphism, and it works across languages.

You should note that the second call to ApplyBrakes() would cause an exception because we threw
an exception from Car's ApplyBrakes(). Although Car's ApplyBrakes() was written using VB.NET, we
could still catch the exception that it's throwing in C#, proving that exception handling works across
languages.

using System

class TestDrive
{
public static void Main()

{

Vehicle v; [/ Vehicle reference
try
{

Plane p = new Plane();

vV = p;

v. TurnLeft();
V. Appl yBrakes();

Car ¢ = new Car();

vV = C;

v. TurnLeft();

v. Appl yBrakes(); // Exception

cat ch(Exception e)
{
Consol e. WiteLine(e. ToString());

}

}
}

If you want to test out these features, you can create an EXE using the following command:
csc /r:vehicle.dll;car.dll;plane.dll /t:exe /out:drive.exe drive.cs

Since we have used the Vehicle, Car, and Plane classes in this code, we must include references to
vehicle.dll, car.dll, and plane.dll. In addition, since we are building an EXE, we need to signify this to
the C# compiler using the/ t : exe option. Once you have built this EXE and executed it, you get the
following output:

Pl ane turns left.

Air brakes being used.

Car turns left.

Car trying to stop.

System Exception: Brake failure!
at Car. Appl yBrakes()
at TestDrive.Main()

As expected, the plane first turns left and then uses its air brakes. Then the car turns left, tries to stop,
but can't, so it throws an exception, which is caught in the Main() method.

In this simple example, we have shown that you can now take advantage of inheritance, polymorphism,
and exception handling across different languages in the .NET Framework.

.NET Framework Essentials

3.4 Summary

We started this chapter by tellin g you that .NET provides a common programming model, which
reduces the learning curve and increases productivity. Once you've learned how to do something
using the classes in the .NET Framework, this knowledge will transfer to any .NET language. We then
illustrated that we could write the same type of code, supporting major .NET features, in any given
language. Finally, we proved to you that .NET indeed supports language integration, which is
something never before possible using Microsoft platforms and tools, prior to .NET.

59

.NET Framework Essentials

Chapter 4. Working with .NET Components

Having seen the language-integration examples in the previous chapter, we know that all .NET
assemblies are essentially binary components.t! You can treat each .NET assembly as a component
that you can plug into another component or application, without the need for source code, since all
the metadata for the component is stored inside the .NET assembly. While you have to perform a ton
of plumbing to build a component in COM, you need to perform zero extra work to get a component
in .NET, as all .NET assemblies are components by nature.

11 Remember, as we explained in Chapter 1, we're using the term "component” as a binary, deployable unit, not as a COM class.

In this chapter, we examine the more advanced topics, including component deployment, distributed
components, and enterprise services, such as transaction management, object pooling, role-based
security, and message queuing.

4.1 Deployment Options

For a simple program like hello.exe that we built in Chapter 2, deployment is easy: copy the
assembly into a directory, and it's ready to run. When you want to uninstall it, remove the file from the
directory. However, when you want to share components with other applications, yo u've got to do
some work.

In COM, you must store activation and marshaling® information in the registry for components to
interoperate; as a result, any COM developer can discuss at length the pain and suffering inherent in
COM and the system registry. In .NET, the system registry is no longer necessary for component
integration.

21 Distributed application requires a communication layer to assemble and disassemble application data and network streams. This
layer is formally known as a marshaler in Microsoft terminology. Assembling and disassembling an application-level protocol network
buffer are formally known as marshalingand unmarshaling respectively.

In the .NET environment, components can be private , meaning that they are unpublished and used by
known clients, or shared, meaning that they are published and used by all clients. This section
discusses several options for deploying private and shared components.

4.1.1 Private Components

If you have private components that are used only by specific clients, you have two deployment
options. You can store the private components and the clients that use these components in the same
directory, or you can store the components in a specific directory that the client can access. Since
these clients use the exact private components that they referenced at build time, the CLR doesn't
support version checking or enforce version policies on private comporents.

To install your applications in either of these cases, perform a simple xcopy of your application files
from the source installation directory to the destination directory. When you want to remove the
application, remove these directories. You don't have to write code to store information into the
registry, so there's no worrying about whether you've missed inserting a registry setting for correct
application execution. In addition, because nothing is stored in the registry, you don't have to worry
about registry residues.

4.1.1.1 One-directory deployment

To specify component location in the same directory as the client application, use the following syntax
(as we did in aChapter 3 example):

csc /r:vehicle.dll;car.dll;plane.dll /t:exe /out:drive.exe drive.cs

61

The reference toplane.dll does not include a directory path; therefore, the C# compiler stores this
reference as is into the client application's assembly manife st so that the CLR can resolve this
reference at runtime (i.e., find and load plane.dll and activate the Plane class). If you move any of the
DLLs to a different directory, you will get an exception when you execute drive.exe.

4.1.1.2 Multiple-directory deployment

Instead of storing all components in the same directory as your client application, you can also use
multiple, private paths to segregate your components to be easier to find and manage. For example,
we will separate the vehicle, car, and plane components into their own private directories, as shown in
Figure 4-1. We will leave thedrive.exe application in the top directory, MultiDirectories.

Figure 4-1. Multiple directory tree of components
—_] MutiDirectories
) ear
1 plane
1 wehide

When you build the vehicle component, you don't have to do anything special, as it doesn't reference
or use any third-party components. However, when you build the car or plane component, you must
refer to the correct vehicle component (i.e., the one in the vehicle directory). For example, to build the
plane component successfully, you must explicitly refer to vehicle.dll using a specific or relative path,
as shown in the following command (cd to the plane directory):

csc /r:..\vehicle\vehicle.dll /t:library /out:plane.dll plane.cs

You can build the car component the same way you build the plane component. To compile your client
application, you must also refer to your dependencies using the correct paths (cd to the main directory,
MultiDirectories, before you type this command all on one line):

csc /r:vehicle\vehicle.dll;car\car.dll; plane\plane.dll
/t:exe /out:drive.exe drive.cs

When you execute this command, the C# compiler records these referenced private paths into your
application's assembly manifest. When you execute drive.exe, the CLR looks into your application's
assembly manifest to find and load the targ et components.

4.1.2 Shared Components

Unlike applicationprivate assemblies, shared assemblies—ones that can be used by any client
application—must be published or registered in the system Global Assembly Cache (GAC). When you
register your assemblies ag ainst the GAC, they act as system components, such as a system DLL that
every process in the system can use. A prerequisite for GAC registration is that the component must
possess originator and version information. In addition to other metadata, these two items allow
multiple versions of the same component to be registered and executed on the same machine. Again,
unlike COM, we don't have to store any information in the system registry for clients to use these
shared assemblies.

There are three general steps to registering your shared assemblies against the GAC:

1. Use the shared named (sn.exe) utility to obtain a public/private key pair. This utility generates
a random key pair for you and saves the key information in an output file—for example,
originator.key.

2. Build your assembly with an assembly version number and the key information from
originator.key.

3. Use the .NET Global Assembly Cache Utility (gactutil.exe) to register your assembly in the
GAC. This assembly is now a shared assembly and can be used by any client.

62

.NET Framework Essentials

The commands that we use in this section refer to relative paths, so if you're following along, make
sure that you create the directory structure as shown in Figure 4-2. The vehicle, plane, and car
directories hold their appropriate assemblies, and the key directory holds the public/private key pair
that we will generate in a moment. The car-build directory holds a car assembly with a modified build
number, and the car-revision directory holds a car assembly with a modified revision number.

Figure 4-2. Directory structure for examples in this section
= |_] Shared Assembias
Ccar
1 car-build
| car-revision
0 key
1 plane
_1 wehide

4.1.2.1 Generating arandom key pair

We will perform the first step once and reuse the key pair for all shared assemblies that we build in this
section. We're doing this for brevity because you can use different key information for each assembly,
or even each version, that you build. Here's how to generate a random key pair (be sure to do this in
the key directory):

sn -k originator.key

The -k option generates a random key pair and saves the key information into the originator.key file.
We will use thisfile as input when we build our shared assemblies. Let's now examine steps 2 and 3
of registering your shared assemblies against the GAC.

4.1.2.2 Making the vehicle component a shared assembly

In order to add version and key information into the vehicle component (developed using Managed
C++), we need to make some minor modifications to vehicle.cpp, as follows:

#usi ng<nscorlib.dl|>
usi ng nanespace System

usi ng nanmespace System : Refl ection;
[assenbl y: Assenbl yVersion("1.0.0.0")];
[assenmbl y: Assenbl yKeyFil e("..\\ key\\origi nator. key")];

public _ _gc _ _interface | Steering
{

void TurnLeft();

void TurnRight();

b
public _ _gc class Vehicle : public |Steering
{ publi c:
virtual void TurnLeft()
: Consol e::WitelLine("Vehicle turns left.");
}
virtual void TurnRight()
{ Consol e: : WiteLine("Vehicle turn right.");
}

virtual void ApplyBrakes() = 0;
b

The first boldface line indicates that we're using the Reflection namespace, which defines the
attributes that the compiler will intercept to inject the correct information into our assembly manifest.
(For a discussion of attributes, see Section 4.3.1 later in this chapter.) We use the

Assenbl yVer si on attribute to indicate the version of this assembly, and we use the

Assenbl yKeyFi | e attribute to indicate the file containing the key information that the compiler
should use to derive the publickey-token value.

Once you've done this, you can build this assembly using the following commands, which you've seen
before:

cl /CLR /c vehicle.cpp
link -dIl /out:vehicle.dll -noentry vehicle. obj

After you've built the assembly, you can use the .NET Global Assembly Cache Utility to register this
assembly into the GAC, as follows:

gacutil.exe /i vehicle.dll

Successful registration against the cache turns this component into a shared assembly. A version of

this component is copied into the GAC so that even if you delete this file locally, you will still be able to
run your client program £l

Bl However, don't delete the file now because we need it to build the car and plane assemblies.

4.1.2.3 Making the car component a shared assembly

In order to add version and key information into the car component, we need to make some minor
modifications to car.vb, as follows:

| nports System

I mports System Refl ection
<Assemnbl y: Assenbl yVersi on(" 1. 0.0.0") >
<assenbl y: Assenbl yKeyFil e("..\\key\\ ori gi nat or. key") >

Public Cl ass Car
I nherits Vehicle

Overrides Public Sub TurnLeft()
Consol e. WiteLine("Car turns left.")
End Sub

Overrides Public Sub TurnRight()
Console. WiteLine("Car turns right.")
End Sub

Overrides Public Sub ApplyBrakes()
Consol e. WiteLine("Car trying to stop.")
Console.WitelLine("ORIG NAL VERSION - 1.0.0.0.")
t hrow new Exception("Brake failure!")

End Sub

End Cl ass

.NET Framework Essentials

Having done this, you can now build it with the following command:
vbc /r:..\vehicle\vehicle.dl| /t:library /out:car.dll car.vb

Notice that the car component uses a specific vehicle component,. .\ vehi cl e\ vehicl e. dl | . At
runtime, if the CLR cannot find this specific file here or within the GAC, it will throw an exception. Once
you've built this component, you can register it against the GAC:

gacutil /i car.dll

At this point, you can delete car.dll in the local directory because it has been registered in the GAC.

4.1.2.4 Making the plane component a shared assembly

In order to add version and key information into the plane component, we need to make some minor
modifications to plane.cs, as follows:

usi ng System
usi ng System Refl ecti on;

[assenbl y: Assenbl yVersion("1.0.0.0")]
[assenmbl y: Assenbl yKeyFil e("..\\ key\\originator.key")]

public class Plane : Vehicle

{
override public void TurnLeft()
{
Consol e. WiteLine("Plane turns left.");
}
override public void TurnRight()
{
Consol e. WiteLine("Plane turns right.");
}
override public void ApplyBrakes()
{
Console. WiteLine("Air brakes being used.");
}

}

Having done this, you can build the assembly with the following command:
csc /r:..\vehicle\vehicle.dll /t:library /out:plane.dl | plane.cs
gacutil /i plane.dll

Of course, the last line in this snippet simply registers the component into the GAC.

4.1.2.5 Viewing the GAC

Now that we've registered all our components into the GAC, let's see what the GAC looks like.
Microsoft has shipped a shell extension, the Shell Cache Viewer, to make it easier for you to view the
GAC. On our machines, the Shell Cache Viewer appears when we navigate toC:\WINNT\Assembly,

as shown in Figure 4-3 1

B This path is entirely dependent upon the %wi ndi r %setting on your machine.

Figure 4-3. Our shared assemblies in the GAC

I WINNT' Assembly ' =] 5|
Fle Edit Wew Favorites Tools Help “
+ Back - i) search ~“iFolders o PHistory Ty ST X »

Address |_"| CAWINNT ssembly - P
Global Assembly Name | Type | ¥ersion | Culbure | Public Key Taken |;|

: 1.0.0.0 d730d98bekde2bba

1dlplane 1.0.0.0 d7aid9sbebdestba

1) vehicl 1.0.0.0 drandoabebdezbba EI

| objects) selected 7.04 MB 1=l My Computer

As you can see, the Shell Cache Viewer shows that all our components have the same version
number because we used 1.0.0.0 as the version number when we built our components. Additionally,
it shows all our components having the same public-key-token value, because we used the same key
file, originator.key.

4.1.2.6 Building and testing the drive.exe

You should copy the previousdrive.cs source-code file into theShared Assemblies directory, the root

of the directory structure (shown in Eigure 4-2) we are working with in this section. Having done this,
you can build this component as follows (remember to type everything on one line):

csc /r:vehicle\lvehicle.dll;car\car.dll;plane\plane.dlI
/t:exe [out:drive.exe drive.cs

Once you've done this, you can execute thedrive.exe component, which will use thevehicle.dll, car.dll,
and plane.dll assemblies registered in the GAC. You should see the following as part of your output:

ORI G NAL VERSION - 1.0.0.0.

To uninstall these shared components, select the appropriate assemblies and press the Delete key
(but if you do this now, you must reregister these assemblies because we'll need them in the
upcoming examples). When you do this, you've taken all the residues of these components out of the
GAC. All that's left is to delete any files that you've copied over from your installation diskette—
typically, all you really have to do is recursively remove the application directory.

4.1.2.7 Adding new versions

Unlike private assemblies, shared assemblies can take advantage of the rich versioning policies that
the CLR supports. Unlike earlier OSevel infrastructures, the CLR enforces versioning policies during
the loading of all shared assemblies. By default, the CLR loads the assembly with which your
application was built, but by providing an application configuration file, you can command the CLR to
load the specific assembly version that your application needs. Inside an application configuration file,
you can specify the rules or policies that the CLR should use when loading shared assemblies upon
which your application d epends.

Let's make some code changes to our car component to demonstrate the default versioning support.
Remember that version 1.0.0.0 of our car component's ApplyBrakes() method throws an exception,
as follows:

Overrides Public Sub ApplyBrakes()
Consol e. WiteLine("Car trying to stop.")
Consol e. WiteLine("ORIG NAL VERSION - 1.0.0.0.")
t hrow new Exception("Brake failure!")

End Sub

.NET Framework Essentials

Let's create a different build to remove this exception. To do this, make the following changes to the
ApplyBrakes() method (store this source file in the car-build directory):

Overrides Public Sub ApplyBrakes()
Console. WiteLine("Car trying to stop.")
Consol e. WitelLine("BU LD NUMBER change - 1.0.1.0.")

End Sub

In addition, you need to change the build number in your code as follows:

<Assenbl y: Assenbl yVersion("1.0.1.0")>

Now build this component, and register it using the following commands:

vbc /r:..\vehicle\vehicle.dll
[t:library /out:car.dll car.vb
gacutil /i car.dll

Notice that we've specified that this version is 1.0.1.0, meaning that it's compatible with Version
1.0.0.0. After registering this assembly with the GAC, execute your drive.exe application, and you will
see the following statement as part of the output:

ORI GI NAL VERSION - 1.0.0.0.
This is the default behavior—the CLR will load the version of the assembly with which your application

was built. And just to prove this statement further, suppose that you provide Version 1.0.1.1 by making
the following code changes (store this version in the car-revision directory):

Overrides Public Sub ApplyBrakes()

Consol e. WiteLine("Car trying to stop.")

Consol e. Wi teLi ne("REVI SION NUMBER change - 1.0.1.1.")
End Sub

<Assenbl y: Assenbl yVersion("1.0.1.1")>

This time, instead of changing the build number, you're changing the revision number, which should

still be compatible to the previous two versions. If you build this assembly, register it against the GAC,
and execute drive.exeagain, you will get the following statement as part of your output:

ORI GI NAL VERSION - 1.0.0.0.
Again, the CLR chooses the version with which your application was built.

As shown inEigure 4-4, you can use the Shell Cache Viewer to verify that all three versions exist on
the system simultaneously. This implies that the support exists for side-by-side execution —which
terminated DLL Hell in .NET.

Figure 4-4. Multiple versions of the same shared assembly

67

~ia/x)
File Edit Yew Favortes Todls Help n
+ Back. -] ‘Disearch =“iFolders _Pristory T N ™
Agdress |] c:\winnTiassembly -] a0
Global Aszembly Name | Ty | Verson | Culture | Public Key Token |ﬂl
lcar Lot d730d98¢bdazbba
1flcar 1.0.1.0 d730d3804bde2bba
slcar 1,0,0.0 d7a0dombebdesbbs «|
| object{s) sslected 7,06 MB 4l My Computer

If you want your program to use a different compatible version of the car assembly, you have to
provide an application configuration file. The name of an application configuration file is composed of
the physical executable name and ".config" appended to it. For example, since our client program is
named drive.exe, its configuration file must be named drive.exe.config .

Here's adrive.exe.config file that allows you to tell the CLR to load Version 1.0.1.0 of the car assembly
for you (instead of loading the default version, 1.0.0.0). The two boldface attributes say that although
we built our client with version 1.0.0.0 ©| dVer si on) of the car assembly, load 1.0.1.0 (newVer si on)
for us when we run drive.exe.

<?xm version ="1.0"?>
<configuration>
<runti nme>
<assenbl yBi ndi ng xm ns="urn: schemas- m crosoft-comasmv1l">

<dependent Assenbl y>
<assenbl yldentity nanme="car"
publ i cKeyToken="D730D98B6BDE2BBA"
cul ture="" />

<bi ndi ngRedi rect ol dVersi on="1.0.0.0"
newVer si on="1.0.1.0" />

</ dependent Assenbl y>
</ assemnbl yBi ndi ng>
</runtime>
</ configuration>

Once you create this configuration file (stored in the same directory as thedrive.exe executable) and
execute drive.exe, you will see the following as part of your output:

BU LD NUMBER change - 1.0.1.0.

If you change the configuration file so that newVer si on=1. 0. 1. 1 and if you execute drive.exe again,
you will see the following as part of your output:

REVI SI ON NUMBER change - 1.0.1.1.

There are two other attributes in this configuration file that we want to explain. Thenamne attribute of
theassenbl yl dent ity tag indicates the shared assembly's human-readable name that is stored in
the GAC. The publ i cKeyToken attribute records the public-key-token value, which is an 8-byte hash
of the public key used to build this component. There are several ways to get this 8-byte hash: you can
copy it from the Shell Cache Viewer, you can copy it from the IL dump of your component, or you can
use the Shared Name utility to get it, as follows:

sn -T car.dll

.NET Framework Essentials

Having gone over all these examples, you should realize that you have full control over which
dependent assembly versions the CLR should load for your applications. It doesn't matter which
version was built with your application: you can choose different versions at runtime merely by
changing a few attributes in the application configuration file.

4.2 Distributed Components

A component technology should support distributed computing, allowing you to activate and invoke

remote services, as well as services in another application domain.=! Distributed COM, or DCOM, is
the wire protocol that provides support for distributed computing using COM. While DCOM is fine for
distributed computing, it is inappropriate for the global cyberspace because it doesn't work well in the

face of firewalls and NAT software. Some other shortcomings of DCOM are expensive lifecycle
management, protocol negotiation, and binary formats.

51 Each Windows process requires its own memory address space, making it fairly expensive to run multiple Windows processes. An
application domain is a lightweight or virtual process. All application domains of a given Windows process can use the same memory
address space.

To eliminate or at least mitigate these shortcomings, .NET provides a host of different distributed
support. The Remoting APl in .NET allows you to use a host of channels, such as TCP and HTTP
(which uses SOAP), for distributed computing. It even permits you to plug in your own custom
channels, should you require this functionality. Best of all, since the framework is totally object-
oriented, distributed computing in .NET couldn't be easier. To show you how simple it is to write a
distributed application in .NET, let's look at an example using sockets, otherwise known as the TCP
channelin .NET.

4.2.1 Distributed Hello Server

In this example, we'll write a distributed Hello application, which outputs a line of text to the console
whenever a client invokes its exposed method, SayHello(). Since we're using the TCP channel, we'll
tell the compiler that we need the definitions in the System.Runtime.Remoting and
System.Runtime.Remoting.Channels.Tcp namespaces.

Note that this class, CoHello, derives from MarshalByRefObject. This is the key to distributed
computing in .NET because it gives this object a distributed identity, allowing the object to be
referenced across application domains, or even process and machine boundaries. Amarshal-by-
reference object requires a proxy to be set up on the client side and a stub to be set up on the server
side, but since both of these are automatically provided by the infrastructure, you don't have to do any
extra work. Your job is to derive from MarshalByRefObject to get all the support for distributed
computing.

(61 ¢ you fail to do this, your object will not have a distributed identity since the default is marshal by -value, which means that a copy of
the remote object is created on the client side.

usi ng System

using System Runti ne. Renoti ng;

usi ng System Runti me. Renoti ng. Channel s;

usi ng System Runti me. Renoti ng. Channel s. Tcp;

public class CoHell o : Marshal ByRef Obj ect

{
public static void Main()

{
TcpChannel channel = new TcpChannel (4000);

Channel Servi ces. Regi st er Channel (channel) ;
Renot i ngConfi gurati on. Regi st er Wl | KnownSer vi ceType (

t ypeof (CoHel | 0), /1 Type nane
"Hel | oDot Net ", /'l URI

69

Wel | KnownObj ect Mode. Singl eton // SingleCall or Singleton

);
System Console. WiteLine("Hit <enter> to exit...");
Syst em Consol e. ReadLi ne();
}
public void SayHello()
{
Consol e. WiteLine("Hello, Universe of .NET");
}

}

The SayHello() method is public, meaning that any external client can call this method. As you can
see, this method is very simple, but the interesting thing is that a remote client application (which we'll
develop shortly) can call it because the Main() function uses the TcpChannel class. Look carefully a t

Main(), and you'll see that it instantiates a TcpChannel, passing in a port number from which the
server will listen for incoming requests.2

[Believe it or not, all you really have to do is replace TcpChannel with Ht t pChannel to take advantage of HTPP and SOAP as the
underlying communication protocols.

Once we have created a channel object, we then register the channel to the ChannelServices, which
supports channel registration and object resolution. Having done this, you must then register your
object with the RemotingConfiguration so that it can be activated—you do this by calling the
RegisterWellKnownServiceType() method of the RemotingConfiguration class. When you call this
method, you must pass in the class name, a URI, and an object-activation mode. The URI is important
because it's a key element that the client application will use to refer specifically to this registered
object. At the time of this writing, the object-activation mode can be either Singleton, which means that
the same object will service many calls, or SingleCall, which means an object will service at most one
call®! Here's how to build this distributed application:

Bl |n this example, we've shown you the code to create a channel, register a channel with the channel services, and register your object
with the remoting configuration, but you don't have to write all this code if you provide an application configuration file with all this
information.

CSC server.cs

Once you've done this, you can start the server program, which will wait endlessly until you hit the
Enter key. The server is now ready to service client requests.

4.2.2 Remote Hello Client

Now that we have a server waiting, let's develop a client to invoke the remote SayHello() method.
Instead of registering an object with the remoting configuration, we need to activate a remote object.
So let's jump into the code now to see how this works. As you examine the following program, note
these items:

We're using types in the System.Runtime.Remoting and
System.Runtime.Remoting.Channels.Tcp namespaces, since we want to use the TCP
channel.

Our Client class doesn't need to derive from anything because it's not a server -side object that
needs to have a distributed identity.

Since we're developing a client application, we don't really need to specify a client port when
we instantiate the TcpChannel.

Other than these items, the key thing to note is object activation, shown in the second boldface
statement in the following code. To invoke remote methods, you must first activate the remote object
and obtain anassociated proxy on the client side. To activate the object and get a reference to the

70

.NET Framework Essentials

associated proxy, you call the GetObject() method of the Activator class. When you do this, you must
pass along the remote class name and its fully qualified location, including the complete URI. Once
you've successfully done this, you can then invoke remote methods.

usi ng System

usi ng System Runti nme. Renpti ng;

usi ng System Runti nme. Renoti ng. Channel s;

usi ng System Runti me. Renoti ng. Channel s. Tcp;

public class Cient

{
public static void Main()
{
try
TcpChannel channel = new TcpChannel ();
Channel Servi ces. Regi st er Channel (channel) ;
CoHello h = (CoHell o) Activator. Get Object (
t ypeof (CoHel | 0), /'l Renote type
"tcp://1127.0.0.1: 4000/ Hel | oDot Net" // Location
)
h. SayHel lo();
cat ch(Exception e)
{
Consol e. WiteLine(e. ToString());
}
}
}

To build this client application, you must include references to the server.exe assembly:
csc /r:Server.exe Client.cs

If you're familiar with DCOM, you must be relieved to find that it's relatively simple to write distributed
applications in .NET.&

[91 |n fact, if you have a copy of Learning DCOM (O'Reilly, 1999) handy, compare these programs with their DCOM counterparts in
Appendix D, Hello, Universe, and you will see what we mean.

4.2.3 Distributed Garbage Collector

Because the new distributed garbage collector is so cool, we must briefly cover this facility. Instead of
using DCOM's delta pinging, which requires few network packets when compared to normal pinging
(but still too many for a distributed protocol), .NET remoting u ses leases to manage object lifetimes. If
you've ever renewed the lease to an IP address on your Dynamic Host Configuration Protocol (DHCP)
network, you've pretty much figured out this mechanism because it's based on similar concepts.

In .NET, distributed objects give out leases instead of relying on reference counting (as in COM) for
lifetime management. An application domain where the remote objects reside has a special object
called the lease manager, which manages all the leases associated with these r emote objects. When
a lease expires, the lease manager contacts a sponsor, telling the sponsor that the lease has expired.
A sponsor is simply a client that has previously registered itself with the lease manager during an
activation call, indicating to the lease manager that it wants to know when a lease expires. If the lease
manager can contact the sponsor, the sponsor may then renew the lease. If the sponsor refuses to
renew the lease or if the lease manager can't contact the sponsor after a configurable timeout period,
the lease manager will void the lease and remove the object. There are two other ways in which a

71

lease can be renewed: implicitly, via each call to the remote object, or explicitly, by calling the Renew()
method of the Lease class.

4.3 COM+ Services in .NET

COM programming requires lots of housekeeping and infrastructure-level code to build large-scale,
enterprise applications. Making it easier to develop and deploy transactional and scalable COM
applications, Microsoft released Microsoft Transaction Server (MTS). MTS allows you to share
resources, thereby increasing the scalability of an application. COM+ Services were the natural
evolution of MTS. While MTS was just another library on top of COM, COM+ Services were subsumed
into the COM library, thus combining both COM and MTS into a single runtime.

COM+ Services have been very valuable to the development shops using the COM model to build

applications that take advantage of transactions, object pooling, role-based security, and so forth. If
you develop enterprise .NET applications, the COM+ Services in .NET are a must.

In the following examples, rather than feeding you more principles, we'll show you examples for using
major COM+ Services in .NET, including examples on transactional programming, object pooling, and

role-based security. But before you see these examples, let's talk about the key element—attributes—
that enable the use of these services in .NET.

4.3.1 Attribute-Based Programming

Attributes are the key elements that help youwrite less code and allow an infrastructure to
automatically inject the necessary code for you at runtime. If you've used IDL (Interface Definition
Language) before, you have seen the i n or out attributes, as in the following example:

HRESULT Set Age([in] short age);
HRESULT Get Age([out] short *age);

IDL allows you to add these attributes so that the marshaler will know how to optimize the use of the
network. Here, thei n attribute tells the marshaler to send the contents from the client to the server,
and the out attribute tells the marshaler to send the contents from the server to the client. In the
SetAge() method, passingage from the server to the client will just waste bandwidth. Similarly,
there's no need to pass age from the client to the server in the GetAge() method.

4.3.1.1 Developing custom attributes

While i n and out are builtin attributes that the MIDL compiler supports, .NET allows you to create
your own custom attributes by deriving from the System.Attribute class. Here's an example of a
custom attribute:

usi ng System
public enum Skill { Guru, Senior, Junior }

[AttributeUsage(AttributeTargets. Cl ass |
AttributeTargets. Field
AttributeTargets. Met hod
AttributeTargets. Property
AttributeTargets. Constructor
AttributeTargets. Event)]

public class AuthorAttribute : System Attribute

{
public AuthorAttribute(Skill s)

{

| evel = s;

72

.NET Framework Essentials

public Skill |evel;
}

The AttributeUsage attribute that we've applied to our AuthorAttribute class specifies the rules for

using AuthorAttribute 2 Specifically, it says that Aut hor At t ri but e can prefix or describe a class or
any class member.

% vou don't have to postfix your attribute class name with the word At t r i but e, but this is a standard naming convention that
Microsoft uses. C# lets you name your attribute class any way you like; for example, Aut hor is a valid class name for your attribute.

4.3.1.2 Using custom attributes

Given that we have this attribute, we can write a simple class to make use of it. To apply our attribute
to a class or a member, we simply make use of the attribute's available constructors. In our case, we
have only one and it's AuthorAttribute(), which takes an author's skill level. While you can use
AuthorAttribute() to instantiate this attribute, .NET allows you to drop the At t r i but e suffix for
convenience, as shown in the following code listing:

[Aut hor (Skill. Guru)]
public class Customer

{ [Aut hor (Skil I . Seni or)]
public void Add(string strNane)
{
}
[Aut hor (Skill. Junior)]
public void Del ete(string strNane)
{
}
}

You'll notice that we've applied the Author attribute to the Customer class, telling the world that a guru

wrote this class definition. This code also shows that a senior programmer wrote the Add() method
and that a junior programmer wrote the Delete() method.

4.3.1.3 Inspecting attributes

You will not see the full benefits of attributes until you write a simple interceptor-like program, which
looks for special attributes and provides additional services appropriate for these attributes. Examples

of real interceptors are marshaling, transaction, security, pooling, and other services in MTS and
COM+.

Here's a simple interceptor-like program that uses the Reflection API to look for AuthorAttribute and
provide additional services. You'll notice that we can ask a type, Cust oner in this case, for all of its
custom attributes. In our code, we ensure that the Customer class has attributes and that the first
attribute isAut hor At t ri but e before we output the appropriate messages to the console. In addition,
we look for all members that belong to the Customer class and check whether they have custom
attributes. If they do, we ensure that the first attribute is an Aut hor At t ri but e before we output the
appropriate messages to the console.

usi ng System Refl ecti on;

public class interceptor

{
public static void Main()

{

73

Object[] attrs = typeof (Custoner). Get CustomAttri butes(false);
if ((attrs.Length > 0) && (attrs[0] is AuthorAttribute))
{
Console. WiteLine("Class [{0}], witten by a {1} progranmer.",
typeof (Custoner).Nanme, ((AuthorAttribute)attrs[0]).level);
}

Met hodl nfo[] m nfo = typeof (Custoner). Get Met hods();
for (int i=0; i < mnfo.Length; i++)
{
attrs = minfo[i].GetCustomAttri butes(false);
if ((attrs.Length > 0) && (attrs[0] is AuthorAttribute))

Aut hor Attribute a = (AuthorAttribute)attrs[O0];

Consol e. WiteLine("Method [{0}], witten by a {1} programer.",
mnfo[i].Nane, (a.level));

if (a.level == Skill.Junior)

Console. WitelLine("***Perform ng automatic " +
"review of {0}'s code***", a.level);

It is crucial to note that when this program sees a piece of code written by a junior programmer, it
automatically performs a rigorous review of the code. If you compile and run this program, it will output
the following to the console:

Class [Custoner], witten by a Guru programmer.
Met hod [Add], witten by a Senior progranmer.

Met hod [Del ete], witten by a Junior progranmer.
Perform ng automatic review of Junior's code

While our interceptor -like program doesn't intercept any object-creation and method invocations, it
does show how a real interceptor can examine attributes at runtime and provide necessary services
stipulated by the attributes. Again, the key here is the last boldface line, which represents a special
service that the interceptor provides as a result of attribute inspection.

4.3.2 Transactions

It is elementary to write a .NET class to take advantage of the transaction support that COM+ Services
provide. All you need to supply at development time are a few attributes, and your .NET components
are automatically registered against the COM+ catalog the first time they are used. Put differently, not

only do you get easier programming, but you also get justin-time and automatic registration of your
COM+ application 22 To develop a .NET class that supports transactions, here's what must happen:

B Automatic registration is nice during development, but don't use this feature in a production environment, because not all clients will
have the administrative privilege to set up COM+ applications.

1. Your class must derive from the ServicedComponent class to exploit COM+ Services.
2. You must describe your class with the correct Transaction attribute, such as

Transaction(TransactionOption.Required), meaning that instances of your class must run
within a transaction.

Besides these two requirements, you can use the ContextUtil class (which is a part of the
System.EnterpriseServices namespace) to obtain information about the COM+ object context. This

74

.NET Framework Essentials

class exposes the major functionality found in COM+, including methods such as SetComplete(),
SetAbort(), and IsCallerinRole(), and properties such as IsInTransaction and MyTransactionVote.

In addition, while it's not necessary to specify any COM+ application installation options, you should do
so because you get to specify what you want, including the name of your COM+ application, its
activation setting, its versions, and so on. For example, in the following code listing, if you don't specify
the ApplicationName attribute, .NET will use the module name as the COM+ application nhame,
displayed in the Component Services Explorer (or COM+ Explorer). For example, if the name of
module is crm.dll, the name of your COM+ application will be crm. Other than this attribute, we also
use the ApplicationActivation attribute to specify that this component will be installed as a library
application, meaning that the component will be activated in the creator's process.

usi ng System
usi ng System Refl ecti on;
usi ng System EnterpriseServices;

[assenmbly: ApplicationName(".NET Essentials CRM')]

[assenbly: ApplicationActivation(ActivationOption.Library)]

[assenmbl y: Assenbl yKeyFi | e("ori gi nator. key")]

[assenbly: Assenbl yVersion("1.0.0.0")]

The rest should look extremely familiar. In the Add() method, we simply call SetComplete() when
we've successfully added the new customer into our databases. If something has gone wrong during
the process, we will vote to abort this transaction by calling SetAbort().

[Transaction(Transacti onOpti on. Required)]

public class Custoner : ServicedConmponent
{
public void Add(string strNanme)
{
try
{

Consol e. WiteLine("New custoner: {0}", strNane);

/1 Add the new custonmer into the system
/1 and make appropriate updates to
/'l several databases.

Context Util. Set Conplete();

catch(Exception e)
{
Consol e. WiteLine(e. ToString());
ContextUtil. SetAbort();
}
}
}

Instead of calling SetComplete() and SetAbort() yourself, you can also use the AutoComplete

attribute, as in the following code, which is conceptually equivalent to the previously shown Add()
method:

[Aut oConpl et e]
public void Add(string strNane)
{

Consol e. WiteLine("New customer: {0}", strNane);

/1 Add the new custoner into the system

75

/1 and make appropriate updates to
/'l several databases.

}

Here's how you build this assembly:

csc /t:library /out:crmdll crmcs

Since this is a shared assembly, remember to register it against the GAC by using the GAC utility:
gacutil /i crmdll

At this point, the assembly has not been registered as a COM+ application, but we don't need to
register it manually. Instead, .NET automatically registers and hosts this component for us in a COM+
application the first time we use this component. So, let's write a simple client program that uses this

component at this point. As you can see in the following code, we instantiate a Customer object and
add a new customer:

usi ng System

public class Cient

{ public static void Main()
{
try
{
Customer ¢ = new Customer();
c. Add("John Gsborn");
}
cat ch(Exception e)
{ Console.WiteLine(e.ToString());
}
}
}

We can build this program as follows:
csc /r:crmdll /t:exe /out:client.exe client.cs

When we run this application, COM+ Services automatic ally create a COM+ application called . NET
Essenti al s CRMto host our crm.dll .NET assembly, as shown in Figure 4 5. In addition to adding

our component to the created COM+ application, .NET also inspects our metadata for provided
attributes and configures the associated services in the COM+ catalog.

Figure 4-5. The Component Services Explorer

“f) Console Window elp =l51x|
Action Wiew b, EEE & i (g &
Tree | Name
= & My Computer _a] | JCompanents
=1 CoM+ Applications J —IRcles
E .MET Essentials CRM
=] Components
+ i Customer
+-__| Roles =l

76

.NET Framework Essentials

As you can see, developing transactional components in .NET is quite easy.

4.3.3 Object Pooling

A pool is technical term that refers to a group of resources, such as connections, threads, and objects.
Putting a few objects into a pool allows hundreds of clients to share these few objects (you can make
the same assertion for threads, connections, and other objects). Pooling is therefore a technique that
minimizes the use of system resources, improves performance, and helps system scalability.

Missing in MTS, object poolingis a nice feature in COM+ that allows you to pool objects that support
transactions but are expensive to create. Similar to providing support for transactions, if you want to
support object pooling in a .N ET class, you need to derive from ServicedComponent, override any of
the Activate(), Deactivate(), and CanBePooled() methods, and specify the object-pooling
requirements in an ObjectPooling attribute, as shown in the following example£2

2] Mixing transactions and object pooling should be done with care. See Juval Lowy's COM+ Services (O'Reilly, 2001).

usi ng System
usi ng System Refl ection;
usi ng System Ent erpriseServices;

[assenbly: ApplicationName(".NET Essentials CRM')]

[assenmbl y: ApplicationActivation(ActivationOption.Library)]
[assenmbl y: Assenbl yKeyFi | e("ori gi nator. key")]

[assenbly: Assenbl yVersion("1.0.0.0")]

[Transaction(Transacti onOpti on. Required)]
[Obj ect Pool i ng(M nPool Si ze=1, MaxPool Si ze=5)]

public class Custoner : ServicedConponent

{
public Custoner()

Consol e. WitelLine("Sonme expensive object construction.");

}

[Aut oConpl et €]
public void Add(string strNane)

{
Consol e. WitelLine("Add custoner: {0}", strNane);
/1 Add the new custoner into the system
/1 and make appropriate updates to
/'l several databases.
}
override public void Activate()
{
Consol e. WiteLi ne("Activate");
/1 Pool ed object is being activated.
/1 Performthe appropriate initialization.
}
override public void Deactivate()
{
Consol e. Wi teLi ne("Deactivate");
/] Object is about to be returned to the pool.
/1 Performthe appropriate clean up.
}
override public bool CanBePool ed()
{

Consol e. Wi teLi ne("CanBePool ed") ;
return true; // Return the object to the pool.
}
}

Take advantage of the Activate() and Deactivate() methods to perform appropriate initialization and
cleanup. The CanBePooled() method lets you tell COM+ whether your object can be pooled when this
method is called. You need to provide the expensive object-creation functionality in the constructor, as
shown in the constructor of this class.

Given this Customer class that supports both transaction and object pooling, you can write the
following clientside code to test object pooling. For brevity, we will create only two objects, but you
can change this number to anything you like so that you can see the effects of abject pooling. Just to
ensure that you have the correct configuration, delete the current . NET Essent i al s CRMCOM+
application from the Component Services Explorer before running the following code:

for (int i=0; i<2; i++)

{
Custonmer ¢ = new Custoner();
c. Add(i.ToString());

}

Running this code produces the following results:

Sone expensive object construction.
Activate

Add custoner: O

Deacti vate

CanBePool ed

Activate

Add custoner: 1

Deacti vate

CanBePool ed

We've created two objects, but since we've used object pooling, only one object is really needed to
support our calls, and that's why you see only one output statement that says, Sone expensi ve

obj ect construction. Inthis case, COM+ creates only one Customer object, but activates and
deactivatesit twice to support our two calls. After each call, it puts the object back into the object pool.
When a new call arrives, it picks the same object from the pool to service the request.

4.3.4 Role-Based Security

Role-based security in MTS and COM+ has drastically simplified the development and configuration of
security for business applications. This is because it abstracts away the complicated details for dealing
with access control lists (ACL) and security identifiers (SID). All .NET components that arehosted in a
COM+ application can take advantage of role-based security. You can fully configure role -based
security using the Component Services Explorer, but you can also manage role-based security in your
code to provide fine-grain security support that's missing from the Component Services Explorer.

4.3.4.1 Configuring role -based security

In order to demonstrate role-based security, let's add two roles to our COM+ application, . NET
Essenti al s CRM The first role represents Agent s who can use the Customer class in every way but
can't delete customers. You should create this role and add to it the localUser s group, as shown in

78

.NET Framework Essentials

Figure 4-6. The second role represents Vanager s who can use the Customer class in every way,
including deleting customers. Create this role, and add to it the local Adni ni st rat or s group.

Figure4-6. Creating roles and adding users to roles

“f) Console indow Help -1® x|
action wew || Y0 | By G- BEOE &= | H@m R
Tree | Mame
= & My Computer] | Jcempanents
= | Com+ Applications —IPcdes
Y NET Essentials CRM
=] Components
+ i Customer
-] Roles
= 88 agert
=l -_l Usars
v ¥} DOGHsers
= "E [Manager
=11 Users
+ €7 DOGAdministrators =

Once you've created these roles, you need to enable access checks for the. NET Essenti al s CRM
COM+ application. Launch the COM+ application's Properties sheet (by selecting. NET Essential s

CRMand pressing Alt-Enter), and select the Security tab. Enable access checks to your COM+
application by providing the options as shown in Figure 4-7.

Figure 4-7. Enable authorization for this COM+ application

General Securty | Identhy | Activation | Queing | Advanced |
Autharization

[¥ Enforce access checks for this spolicatiord

Secuily lavel
" Perfom access checks only at the grocess level

Secuily propesty wil nol be included on the object context.
COM+ zecunty call contest wil not be avalable.

i+ Perfom acoess checks 3 the process and component level,
Sacunty propesty wal be inchaded on the object contest The
COM+ zecuity call corfext i aeailsble
Auitherlication

¥ Enabis suthentication

oK I Cancel

Once you have enabled access checks at the application level, you need to enforce access checks at
the class level too. To do this, launch Cust oner 's Properties sheet, and select the Security tab.
Enable access checks to this .NET class by providing the options shown in Figure 4-8. Here, we're

saying that no one can access the Customer class except for those that belong to the Manager or
Agent role.

79

Figure 4-8. Enforce class-level access checks
2%

Gl:nm:ll Transactions Secunty |ﬂ.cliudioﬂ] Cmculrm:_l.l] .b.d\luncudl

Autharization

- Eﬂ Dam:mpnnert : I. e .

Buodes explicitly st for seleched kem[z):

Hame
L ﬁ Manager
o B foenl

1] 4 I Cancel

Now, if you run the client application developed in the last section, everything will work because you

are a user on your machine. But if you uncheck both the Manager™®l and Agent roles in Figure 4-8
and rerun the client application, you get the following message as part of your output:

3 Since you're a developer, you're probably an administrator on your machine, so you need to uncheck the Manager role too in order
to see an access violation in the test that we're about to illustrate.

Syst em Unaut hori zedAccessExcepti on: Access is denied.
at Client.Main()

You're getting this exception because you've removed yourself from the roles that have access to the

Customer class. Once you've verified this, put the configuration back to what is shown in Figure 4 -8
to prepare the environment for the next test that we're about to illustrate.

4.3.4.2 Programming role -based security

We've allowed anyone in the Agent and Manager roles to access our class, b ut let's invent a rule
allowing only users under the Vanager role to delete a customer from the system (for lack of a better
example). So let's add a new method to the Customer class—we'll call this method Delete(), as
shown in the following code. Anyone belonging to the Agent or Manager role can invoke this method,
so we'll first output to the console the user account that invokes this method. After doing this, we'll
check to ensure that this user belongs to the Vanager role. If so, we allow the call to go through;
otherwise, we throw an exception indicating that only managers can perform a deletion. Believe it our
not, this is the basic premise for programming role-based security.

[Aut oConpl et €]
public void Del ete(string strNane)

{
try
{
Securi tyCal | Cont ext sec;

sec = SecurityCall Context.CurrentCall;
string strCaller = sec.DirectCaller.Account Nane;

Console. WiteLine("Caller: {0}", strCaller);

bool blnRole = sec.lsCallerlnRole("Mnager");
if (!blnRole)
{

}

t hrow new Exception ("Only managers can del ete custoners.");

.NET Framework Essentials

Console. WiteLine("Del ete custonmer: {0}", strNane);

/'l Delete the new custonmer fromthe system
/1 and make appropriate updates to
/'l several databases.

}
catch(Exception e)
{
Consol e. WiteLine(e. ToString());
}

}

Here's the client code that includes a call to the Delete() method:
usi ng System

public class Cient

{
public static void Main()

{
try
{

Custonmer ¢ = new Custoner();
c. Add("John Gsborn");

/'l Success depends on the role
/1 under which this this nethod
/1 is invoked.

c.Delete("Jane Smth");

cat ch(Exception e)

{
Consol e. WiteLine(e. ToString());

}
}
}

Once you've built this program, you can test it using an account that belongs to the local User s group,

since we added this group to the Agent role earlier. On Windows 2000, you can use the following
command to launch a command window using a specific account:

runas /user:dog\thuant cnd

Of course, you should replace dog andt huant with your own machine name and user account,
respectively. After running this command, you will need to type in the correct password, and a new

command window will appear. Execute the client under this user account, and you'll see the following
output:

Add custoner: John Gsborn
Cal | er: DOG\t huant

System Exception: Only managers can del ete custoners.
at Custoner.Delete(String strNane)

You'll notice that the Add() operation went through successfully, but the Delete() operation failed
because we executed the client application under an account that's missing from the Vanager role.

To remedy this, we need to use a user account that belongs to the Vanager role—any account that
belongs to the Admi ni st rat or s group will do. So, start another command window using the
following command:

81

runas /user:dog\adninistrator cnd
Execute the client application again, and you'll get the following output:

Add custoner: John Gsborn
Call er: DOQ Adm ni strator
Del ete custoner: Jane Snith

As you can see, since we've executed the client application using an account that belongs to the
Vanager role, the Delete() operation went through without problems.

4.4 Message Queuing

In addition to providing support for COM+ Services, .NET also supports message queuing. If you've
used Microsoft Message Queuing (MSMQ) services before, you'll note that the basic programming
model is the same but the classes in the System.Messaging namespace make it extremely easy to
develop message-queuing applications. The System.Messaging hamespace provides support for
basic functionality, such as connecting to a queue, opening a queue, sending messages to a queue,
receiving messages from a queue, and peeking for messages on the queue. To demonstrate how
easy it is to use the classes in System.Messaging, let's build two simple applications: one to enqueue
messages onto a private queue on the local computer and another to dequeue these messages from
the same queue 24

41 1 execute these programs, you must have VessageQueui ng installed on your system. You can verify this by launching the
Conput er Managenment console, as shown in Figure 4-9.

4.4.1 Enqueue

Here's a simple program that enqueues a Customer object onto a private queue on the local computer.
Notice first that we need to include the System.Messaging namespace because it contains the classes
that we want to use:

usi ng System
usi ng System Messagi ng;

While the following Customer structure is very simple, it can be as complex as you want because it will
be serialized into an XML-formatted buffer by default before it's placed into the queue.

public struct Custoner

{
public string Last;
public string First;
}

Our program first checks whether a private queue on the local computer exists. If this queue is missing,
the program will create it. Next, we instantiate a MessageQueue class, passing in the target queue
name. Once we have this MessageQueue object, we invoke its Send() method, passing in the
Customer object, as shown in the following code. This will put our customer object into our private
queue.

public class Enqueue

{
public static void Main()
{
try
{
string path = ".\\ PRI VATE$\\ NE_queue";

82

.NET Framework Essentials

i f(!MessageQueue. Exi st s(path))
{

/'l Create our private queue.
MessageQueue. Creat e(pat h);

}

/1l Initialize the queue.
MessageQueue g = new MessageQueue(path);

/1l Create our object.

Custoner ¢ = new Custoner();
c.Last = "Oshorn";

c.First = "John";

/1 Send it to the queue.

g. Send(c);
}
catch(Exception e)
{
Consol e. WiteLine(e. ToString());
}

}
}

Use the following command to build this program:
csc /t:exe /out:enqueue. exe enqueue. CcS

Execute this program, examine the Computer Management console, and you will see your message in
the private queue calledne_queue, as shown inFigure 4 -9.

Figure 4-9. Our private queue, ne_gueue, with a message

LI Computer Management = [=] 3
ation ew |~ B@ DB @

Tres | Label [priority | class | size | MessageiD
== Message Quedng = | 3 Noemal 191 {FI0004FS-

4|] Outgoing Queues
#1-|_7] Public Cresues
=1 |_] Privabe Queuss
= y admin_gqueuet
& B mgs_gueued J
- ne_gueus
= Foueue messages
+ 3 Journsl messages =] [4] +

4.4.2 Dequeue

Now that there's a message in our private message queue, let's write a program to dequeue and
examine the message. After ensuring that the private queue we want exists, we initialize itby
instantiating a MessageQueue class, passing in the path to our private queue. Next, we tell the
MessageQueue object that the type of object we want to dequeue is Customer. To actually dequeue
the object, we need to invoke the Receive() method, passing in a timeout in terms of a TimeSpan

object, whose parameters stand for hours, minutes, and seconds, respectively. Finally, we cast the
body of the received Message object into a Customer object and output its contents.

usi ng System
usi ng System Messagi ng;
usi ng System Runtine. Seri alization;

public struct Custoner

{

public string Last;
public string First;
}

public class Dequeue

{
public static void Main()

{
try
{
string strQueuePath = ".\\ PRI VATE$\\ NE_queue";

/'l Ensure that the queue exists
if (!MessageQueue. Exi st s(strQueuePat h))
{

t hrow new Exception(strQueuePath +

}

/1l Initialize the queue
MessageQueue q = new MessageQueue(strQueuePat h);

doesn't exist!");

/'l Specify the types we want to get back
string[] types = {"Custonmer, dequeue"};
((Xm MessageFormatter)q. Formatter). Target TypeNanes = types;

/'l Receive the nmessage (5 sec tinmeout)
Message m = . Recei ve(new Ti neSpan(0, 0,5));

/'l Convert the body into the type we want
Customer ¢ = (Custonmer) m Body;

Consol e. WiteLine("Custoner: {0}, {1}", c.Last, c.First);

cat ch(Exception e)
{
Consol e. WitelLine(e. ToString());
}
}
}

Compile and execute this program, look at the Conput er Managenent console, press F5 to refresh
the screen, and you will realize that the previous message is no longer there.

4.5 Summary

In this chapter, we've touched many aspects of componentization, including deployment strategies,
distributed computing, and enterprise services, such as transaction management, object pooling, role-
based security, and message queuing. We have to give due credit to Microsoft for making
componentization easier in the .NET Framework. Case in point: without .NET, it would be impossible
for us to illustrate the complete code for all of these programs in a single chapter of a book.

.NET Framework Essentials

Chapter 5. Data and XML

Almost everything we do in the software industry relates to data in some way. At some point, all
software developers must deal with data, perhaps using a database, text file, spreadsheet, or some
other data store. There are many different methods or technologies for using, manipulating, and
managing data, and newer methods are continually introduced to enhance existing ones. These
methods range from function-based APIs to object-based frameworks and proprietary libraries.

Five years ago, it was common for a simple VB desktop application to access a private Microsoft
Access database stored on the local hard disk, but this is no longer a typical scenario. Today's
applications take advantage of distributed-component technologies to exploit scalability and
interoperability, thus widening the reach of the application to the enterprise. While ActiveX Data
Objects (ADO) served a typical VB application well a few years ago, it might soon fail to meet the
increasing demands for better scalability, performance, and interoperability across multiple platforms.

Here's where ADO.NET comes in. ADO.NET provides huge benefits that allow us to build even better
enterprise applications. In this chapter, you will learn the benefits of ADO.NET, the ADO.NET
architecture, the main classes in ADO.NET and how they work, and the integration of ADO.NET and
XML.

5.1 ADO.NET Architecture

Micros oft ADO.NET's object model encompasses two distinct groups of classes: content components
and managed-provider components. The content components include the DataSet class and other
supporting classes such as DataTable, DataRow, DataColumn, and DataRelatio n. These classes
contain the actual content of a data exchange. The managed-provider components assist in data
retrievals and updates. Developers can use the connection, command, and data reader objects to
directly manipulate data. In more typical scenarios, developers use the DataAdapter class as the
conduit to move data between the data store and the content components. The data can be actual
rows from a database or any other form of data, such as an XML file or an Excel spreadsheet.

Figure 5-1 shows the high-level architecture of ADO.NET. ADO developers should have no problems
understanding connection and command objects. We offer a brief overview then go into more detail in
the rest of this chapter.

Figure 5-1. High-level architecture of ADO.NET

Date-Reloted Companents DalaSel
DofoReder ' :
I Cominand ’
Managed- Provider Components Cormmand :
— o
Conmeclion :
Conmeclion .
Dotoddopler 1

SOL Server and other
DataStores QLE DB dafa store

A data reader is a new object providing fast, forward-only, and r ead-only access to data. This is similar
to an ADO Recordset with serverside, forward-only, and read-only cursor types.

The DataSet class is analogous to a lightweight cache of a particular database from the data store. It
allows reading and writing of d ata and schema in XML, and it is tightly integrated with
XmlDataDocument, as you will see later.

The DataAdapter class serves as a higher-level abstraction of the connection and command classes.

It enables you to load content from a data store into a DataSet and reconcile DataSet changes back to
the data store.

5.2 ADO.NET Benefits

ADO.NET brings with it a number of benefits, which fall into the following categories:
Interoperability

The ability to communicate across heterogeneous environments.

Scalability

The ability to serve a growing number of clients without degrading system performance.

Productivity

The ability to quickly develop robust data access applications using ADO.NET's rich and
extensible component object model.

Performance

An improvement over previous ADO versions due to the disconnected data model.

5.2.1 Interoperability

All communication involves data exchange, whether the communication between distributed
components is through a request/response methodology or a message -based facility. Current
distributed systems assume that the components involved in the communication are using the same
protocol and data format. This assumption is too restrictive if the client base must expand to cover the
enterprise and beyond. Data-access layers should impose no such restrictions.

In current Microsoft Windows Distributed interNet Applications (DNA) Architechure, application
components pass data back and forth as ADO disconnected recordsets. This requires the data-
providing components, as well as the data-consuming components, to use the Component Object
Model (COM). The payload, the actual content we are passing around, is packaged in a data format
called Network Data Representation (NDR). These NDR packages are streamed between
components.

There are two issues with current Windows DNA systems. The first is that both ends of the
communication pipe must have the COM library. The second issue is that it is difficult to set up and
manage these communications across firewalls. If your middle-tier components are COM/DCOM-
based and you are using them within your intranet, you are in good shape. Put another way, if all your
components use Microsoft technology, you're fine. With the advent of electronic commerce (e
commerce), however, enterprise applications must interoperate with more than just Microsoft-
development shops. ADO must improve for cross-platform components to seamlessly share data,
breaking away from the limitations of COM/DCOM.

ADO.NET addresses the common data-exchange limitation by using XML as its payload data format.
Since XML is text-based and simple to parse, it's a good choice for a common, platform -independent,
transport data format. Furthermore, because XML is nothing more than structured text, employing

86

.NET Framework Essentials

XML as the data format on top of the HTTP network protocol minimizes problems relating to firewalls.
With ADO and its XML format, the clients do not have to know COM to de-serialize the packaged data.
All they need is an XML parser, which is readily available in many flavors on many different platforms.
The data producers and consumers need only adhere to the XML schema to exchange data among
themselves.

5.2.2 Scalability

In a client/server model, it is typical for a client to acquire and hold on to a connection to the server
until all requests are fulfilled. While this works fine in small- to medium -scale applications, this solution
is not scalable across a large enterprise. As soon as the number of clients reaches a certain threshold,
the server becomes the bottleneck as database comections eat up network and CPU resources.
ADO.NET moves away from the client/server model by promoting the use of disconnected datasets.
When a client requests some data, the data is retrieved, it's transferred to the client, and—as soon as
possible—the connection is torn down. Since the connection between the client and the data source is
shortdived, this technique allows more clients to request information from the server, thus solving the
problem of limited connections.

You might think that setting up and tearing down connections is not a good idea since the cost of
establishing a connection is usually high. This is a concern only in the absence of connection pooling.
ADO.NET automatically keeps connections to a data source in a pool, so when an application thinks it
is tearing down a connection, it's actually returning it to the resource pool. This allows connections to
be reused, avoiding the cost of reconstructing new connections from scratch.

Working with data in this disconnected fashion is not new to ADO programmers. The disconnected
recordset was introduced in early versions of ADO. However, in ADO, it is up to the developer to
implement this feature, whereas in ADO.NET, data is disconnected by nature.

ADO.NET has enhanced its predecessor by growing out of the client/server model and into the
distributed components model. By using disconnected datasets as the paradigm for data exchange,
ADO.NET is much more scalable than its predecessors.

5.2.3 Productivity

ADO.NET's rich framework classes allow developers to boost their productivity. Current ADO
developers should have no problems getting up to speed with the object model, because ADO.NET is
a natural evolution of ADO. The core functionality remains the same. We still have the connection
object, representing the pipeline through which commands are executed .2l With ADO.NET, the
functionality is factored and distributed to each object in the model—much better than in previous
versions of ADO. For example, the connection object is responsible only for connecting to and
disconnecting from the data source. In ADO.NET, we can no longer execute a query directly through
the connection object. While some developers might miss this ability, it is a step in the right direction
for cohesion of component development.

m Along with the familiar connection and command objects, ADO.NET introduces a number of new objects, such as DataSet and
DataAdapter. All of these objects will be discussed in "ADO.NET Architecture" later in this chapter.

ADO.NET also boosts developers' productivity through extensibility. Because ADO.NET framework
classes are managed code, developers can inherit and extend these classes to their custom needs. If

you prefer not to do this low-level legwork, you can use the Visual Studio.NET data-design
environment to generate these classes for you.

When it comes to developing applications with ADO.NET, Visual Studio.NET is a great Rapid
Application Development (RAD) tool. You can have the Component Designer generate ADO.NET
typed DataSets. These typed DataSets are extended types, modeled for your data. The generated
code is much more readable, when compared to previous Microsoft code generators. In addition,

these generated classes are type-safe, thus reducing the chances for errors and allowing compilers
and the CLR to verify type usage.

87

In short, ADO.NET improves developers' productivity through its rich and extensible framework
classes. These features are complemented by the rich toolsets for ADO.NET in Visual Studio.NET,
which enable rapid application development.

5.2.4 Performance

Because ADO.NET is mainly about disconnected datasets, the system benefits from improved
performance and scalability. The database server is no longer a bottleneck when the number of

connection requests goes up. Managed Providers in ADO.NET also enable implicit connection pooling,
which reduces the time required to open a connection.

Previous marshaling of recordsets required type conversion to make sure that the datatypes were all
COM based. Since the disconnected dataset is in XML format, there is no need for this type
conversion during transport, as opposed to how data in Network Data Representation format must be
dealt with.

5.3 Content Components

Content components encapsulate data. In previous ADO versions, the Recordset object represented
such a component. The data contained by the recordset component is in the form of a table, consisting
of columns and rows. In ADO.NET, the data encapsulated by the DataSet component is in the form of
a relational database, consisting of tables and relationships. This is a major improvement in data-
access technology. In this section, we provide a high-level survey of th e core classes that make up the

content components, including DataSet, DataTable, DataColumn, DataRow, DataView, and
DataRelation 2

P The complete list of all classes can be found in Microsoft .NET SDK.

5.3.1 DataSet

If you are familiar with ADO, you know that data transfers between components are arecordset. The
recordset contains data in a tabular form. Whether the recordset includes information from one or
many tables in the database, the data is still returned in the form of rows and columns as if they were
from a single table. ADO.NET allows for more than just a recordset to be shared between application
components. This is one of the mostimportant features of ADO.NET: we will be transferring a DataSet
instead of a recordset.

The DataSet can be viewed as an in-memory view of the database. It can contain multiple DataTable
and DataRelation objects. With previous versions of ADO, the closest you could get to this
functionality was to exchange data with a chain of Recordset objects. When the client application
receives this chained recordset, it can get to each of the recordsets through NextRecordset();
however, there is no way to describe the relationship between each of the recordsets in the chain.
With ADO.NET, developers can navigate and manipulate the collection of tables and their
relationships.

As mentioned earlier, ADO.NET involves disconnected datasets because it is geared toward a
distributed architecture. Since a DataSet is disconnected, it must provide a way to track changes to
itself. The DataSet object provides a number of methods so that all data manipulation done to the
DataSet can be easily reconciled with the actual database (or other data source) at a later time. They
include: HasChanges(), HasErrors, GetChanges(), AcceptChanges(), and RejectChanges(). You
can employ these methods to check for changes that have happened to the DataSet, obtain the
modifications in the form of a changed DataSet, inspect the changes for errors, and then accept or
reject the changes. If you want to communicate the changes to the data store back end (which is
usually the case), just ask the DataSet for an update.

.NET Framework Essentials

The DataSet is intended to benefit enterprise web applications, which are disconnected by nature. You
don't know that the data at the back end has changed until you have updated records you were editing
or performed any other tasks that required data reconciliation with the database.

As depicted in Figure 5 -2, a DataSet contains two important collections. The first is the Tables (of
type DataTableCollection), which holds a collection for all the tables belonging to a given DataSet. The

second collection contains all the relationships between the tables, and it is appropriately named the
Relations (of type DataRelationCollection).

Figure 5-2. Important ADO.NET data objects, including DataSet

| Dalafel |

5.3.1.1 Creating a DataSet: An example in C#

All the tables and relations inside the DataSet are exposed through the DataSet's Tables and
Relations properties, respectively. The following block of C# code demonstrates how to create a
DataSet dynamically that consists of two tables, Orders and OrderDetails, and a relationship between
the two tables:

usi ng System
usi ng System Dat a;

/'l Class and nmethod declarations onmtted for brevity...

/1 Construct the DataSet object
Dat aSet m ds = new Dat aSet (" Dynamni cDS") ;

/1 Add a new table naned "Order” to mds's collection tables
m_ds. Tabl es. Add (" Order");

/1 Add new colums to table "Order"
m_ds. Tabl es[" Order"]. Col utms. Add(" Order | D",
Type. Get Type(" System I nt 32"));
m ds. Tabl es["Order"]. Col ums. Add(" Cust oner Fi r st Name" ,
Type. Get Type(" System String"));
m_ds. Tabl es["Order"]. Col ums. Add(" Cust onmer Last Nane" ,
Type. Get Type(" System String"));
m ds. Tabl es["Order"]. Col unms. Add(" Dat e",
Type. Get Type(" System Dat eTi ne"));

89

/'l Register the colum "Orderl D' as the primary key of table "Order”
Dat aCol umm[] keys = new Dat aCol um[1] ;

keys[0] = m.Jds. Tabl es["Order"]. Colums["Orderl D'];

m ds. Tabl es["Order"]. Pri maryKey = keys;

/1 Add a new table named "OrderDetail"” to mds's collection of tables
m ds. Tabl es. Add ("OrderDetail™);

/1 Add new columms to table "OrderDetail"
m ds. Tabl es["OrderDetai |l "]. Col ums. Add("fk_Order| D",
Type. Get Type(" System | nt 32"));
m _ds. Tabl es["OrderDetai |l "]. Col ums. Add(" Product Code",
Type. Get Type("System String"));
m ds. Tabl es["OrderDetail "]. Col ums. Add(" Quantity",
Type. Get Type(" System | nt 32"));
m ds. Tabl es["OrderDetai |l "]. Col ums. Add("Pri ce",
Type. Get Type(" System Currency"));

/1 Get the DataColumm objects fromtwo DataTabl e objects in a DataSet.
Dat aCol utm parent Col = m ds. Tabl es["Order”]. Col ums["Orderl D'];
Dat aCol umm chil dCol = m.ds. Tabl es["OrderDetail"]. Colums["fk_OrderlD"];

/'l Create and add the relation to the DataSet.

m ds. Rel ati ons. Add(new Dat aRel ati on(" Order _OrderDetail ",
par ent Col ,
childCol));

Let's highlight some important points in this block of code. After instantiating the DataSet object with
the new operator, we add some tables with the Add method of the Tables object. We go through a
similar process to add columns to each Table's Columns collection. Each of the added tables or
columns can later be referenced by name. In order to assign the primary key for the Order table, we
have to create the DataColumn array to hold one or more fields representing a key or a composite key.
In this case, we have only a single key field, Or der | D. We set the PrimaryKey property of the table to
this array of key columns. For the relationship between the two tables, we first create the DataRelation
called Or der _Order Det ai | with the two linking columns from the two tables, and then we add this
DataRelation to the collection of relations of the DataSet.

The following block of C# code shows how to insert data into each of the two tables:

Dat aRow newRow;

newRow = m_ds. Tabl es["Order™]. NewRow();
newRow "OrderI D'] = 101;

newRow " Cust oner Fi r st Nane"] = "John";
newRow " Cust oner Last Nane"] = "Doe";

newRow "Date"] = new DateTinme(2001, 5, 1);;
m ds. Tabl es[" Order "] . Rows. Add(newRow) ;
newRow = m ds. Tabl es["Order"]. NewRow();
newRow "Order | D'] = 102;

newRow " Cust oner Fi r st Name"] = "Jane";
newRow " Cust oner Last Nane"] = "Doe";

newRow "Dat e"] = new DateTi me(2001, 4, 29);
m ds. Tabl es[" Order"]. Rows. Add(newRow) ;

newRow = m. ds. Tabl es["OrderDetail"]. NewRow();
newRow "fk_OrderI D'] = 101;

newRow " Product Code"] = "ltem 100";
newRow "Quantity"] = 7,
newRow "Price"] = "59.95";

m_ds. Tabl es["OrderDetai |l "]. Rows. Add(newRow) ;

.NET Framework Essentials

newRow = m ds. Tabl es["OrderDetail"]. NewRow);
newRow "fk_OrderI D'] = 101;

newRow " Product Code"] = "ltem 200";
newRow "Quantity"] = 1;
newRow "Price"] = "9.25";

m_ds. Tabl es["OrderDetai |l "] . Rows. Add(newRow) ;

newRow = m ds. Tabl es["OrderDetail"]. NewRow);
newRow "fk_Order|I D'] = 102;

newRow " Product Code"] = "Item 200";
newRow "Quantity"] = 3;
newRow "Price"] = "9.25";

m ds. Tabl es["OrderDetail "]. Rows. Add(newRow) ;

Tables and Relations are important properties of DataSet. Not only do they describe the structure of

the inrmemory database, but the DataTables inside the collection also hold the content of the DataSet.

5.3.1.2 XML and Tables Sets

Three methods integrate DataSet tightly with XML, thus making it universally interoperable. These
methods are WriteXml(), WriteXmISchema(), and ReadXmi().

WriteXmlSchema() dumps only the schema of the tables, including all tables and relationships
between tables. WriteXml() can dump both the schema and table data as an XML encoded string.

Both WriteXmISchema() and WriteXml() accept a Stream, TextWriter, XmIWriter, or String
representing a filename. WriteXml() accepts an XmIWriteMode as the second argument.

With XmIWriteMode.WriteSchema, the WriteXml(') method dumps the schema and data. You can
retrieve only the data portion of the XML b y using the XmIWriteMode.lgnoreSchema property.

The DataSet object also provides methods to reconstruct itself from an XML document. Use

ReadXmlData() for reading XML data documents, and ReadXmlSchema() for reading XML schema

documents.
The following code creates an XML document from the previously created dataset:

/1 Dunp the previously shown DataSet to

/1 the console (and also to an XM file)

m ds. WiteXm (Consol e. Qut, Xm WiteMde. WiteSchemm);
mds. WiteXm ("DS_Orders.xm ", Xml WiteMde. WiteSchenmm);

/1 Constructing a new Dat aSet obj ect
Dat aSet ds2 = new Dat aSet (" Rest or edDS") ;
ds2. ReadXm ("DS Orders.xm ");

Let's examine the resulting XML file and its representation of the dataset:

<?xm version="1.0" standal one="yes" ?>
<Dynani cDS>
<xsd: schema i d="Dynanmi cDS"
t ar get Namespace=""
xm ns="" xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: nedat a="urn: schemas-m crosoft-com xm -nsdat a" >
<xsd: el ement nanme="Dynani cDS" nsdat a: | sDat aSet ="t rue" >

<xsd: conpl exType>
<xsd: choi ce maxCccur s="unbounded" >

91

92

<xsd: el enent nanme="Order">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent nane="Order| D"
type="xsd:int"
nsdat a: Or di nal =" 0" />
<xsd: el enent nane="Cust oner Fi r st Nane"
type="xsd: string"
m nCccur s="0"
nsdat a: Or di nal ="1" />
<xsd: el enent nane="Cust onmer Last Nane"
type="xsd: string"
m nCccur s="0"
nsdat a: Or di nal =" 2" />
<xsd: el enent nanme="Dat e"
type="xsd: dat eTi ne"
m nCccur s="0"
nsdat a: Ordi nal =" 3" />
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: el enent name="OrderDetail ">
<xsd: compl exType>
<xsd: sequence>
<xsd: el enent nane="fk_Order| D"
type="xsd:int"
m nCccur s="0"
nsdat a: Ordi nal =" 0" />
<xsd: el ement nanme="Pr oduct Code"
type="xsd: string"
m nCccur s="0"
nsdat a: Ordi nal =" 1" />
<xsd: el ement nanme="Quantity"
type="xsd:int"
m nCccur s="0"
nsdat a: Ordi nal ="2" />
<xsd: el enment nanme="Price"
nsdat a: Dat aType="Syst em Currency"
type="xsd: string"
m nCccur s="0"
nsdat a: Ordi nal =" 3" />
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >

</ xsd: choi ce>
</ xsd: conpl exType>

<xsd: key name="Constraint1l" nsdata: PrimryKey="true">
<xsd: sel ector xpath=".//Order" />
<xsd:field xpath="COrder| D" />

</ xsd: key>

<xsd: keyref nane="Order_OrderDetail" refer="Constraintl">
<xsd: sel ector xpath=".//OrderDetail" />
<xsd:field xpath="fk_OrderI D" />

</ xsd: keyr ef >

</ xsd: el enent >
</ xsd: schema>

.NET Framework Essentials

< ... data portion ... />

</ Dynani cDS>

The root element is named Dynami cDS because that is the name of the dataset we created earlier.
The xsd: schena tag contains all table and relationship definitions in this DynamicDS dataset. Each
table is represented as anxsd: el enent where the name attribute contains the table's name. Each
table's xsd: el enent contains xsd: el enent tags corresponding to each column.

After the table definitions, the document holds definitions for various key types. Thexsd: key element
is used for keys, as shown in the xsd: key named Constrai nt 1. The nsdat a: Pri mar yKey
attribute makes this a primary key, which has the added effect of enforcing uniqueness (every OrderID
in the Order table must be unique).

The xsd: keyref elementis used for foreign keys, as shown in theOr der _Or der Det ai | key that
refers to the Const r ai nt 1 key. This links the OrderDetail and Order tables where
OrderDetail.fk_OrderI D =Order. O derlD.

Let us now look at the data portion of the XML file:

<Or der >
<Order| D>101</ Or der | D>
<Cust oner Fi r st Nane>John</ Cust oner Fi r st Name>
<Cust omer Last Nane>Doe</ Cust oner Last Name>
<Dat €>2001- 05-01T00: 00: 00. 0000</ Dat e>

</ Order >

<Order >
<Order| D>102</ Or der | D>
<Cust oner Fi r st Nane>Jane</ Cust oner Fi r st Name>
<Cust oner Last Nanme>Doe</ Cust oner Last Nane>
<Dat €>2001- 04-29T00: 00: 00. 0000</ Dat e>

</ Order>

<OrderDetail >
<fk_Order| D>101</fk_Order| D>
<Pr oduct Code>lt em 100</ Pr oduct Code>
<Quantity>7</Quantity>
<Price>59.95</ Price>

</ OrderDetail >

<OrderDetail >
<fk_Orderl D>101</fk_Orderl D>
<Pr oduct Code>lt em 200</ Pr oduct Code>
<Quantity>1</Quantity>
<Price>9. 25</Price>

</ OrderDetail >

<OrderDetail >
<fk_Order| D>102</fk_Order| D>
<Pr oduct Code>|t em 200</ Pr oduct Code>
<Quantity>3</Quantity>
<Price>9. 25</Price>

</ OrderDetail >

This part of the XML document is fairly selfexplanatory. For each row of data in the Order table, we
end up with one record of type Order. This is the same for the OrderDetail table.

Becaus e the dataset is inherently disconnected from its source, changes to the data inside the dataset
have to be tracked by the dataset itself. This is done through the following methods: HasChanges(),
GetChanges(), and Merge(). The application can check the changes to the dataset and then ask the

DataAdapter object to reconcile the changes with the data source through the DataAdapter Update
method.

The following block of code demonstrates how to the track and manage changes to a DataSet:

/* Make a change to the data set. */
m ds. Tabl es["OrderDetail "] . Rows[O] ["Quantity"] = 12;

i f(m.ds. HasChanges()){

/* Get a copy of the data set containing the changes. */
Dat aSet changeDS = m ds. Get Changes();

/* Dunp the changed rows. */
changeDS. WiteXm (" ChangedDS. xm ") ;

/[* Commit all changes. */
m ds. Accept Changes();

}

We first change the quantity of one of the OrderDetail rows. Then we ask the dataset for all the

changes and dump it into a new dataset calledchangeDS. This dataset results in the following XML
dump. Notice that because OrderDetail is a child of Order, the change also includes the parent row.

<?xm version="1.0" standal one="yes"?>
<Dynani cDS>
<Or der >
<Order| D>101</ Or der | D>
<Cust onmer Fi r st Name>John</ Cust oner Fi r st Nanme>
<Cust oner Last Name>Doe</ Cust oner Last Nane>
<Dat e>2001-05- 01T00: 00: 00. 0000</ Dat e>
</ Order >
<OrderDetail >
<fk_Order| D>101</fk_Order| D>
<Pr oduct Code>l t em 100</ Pr oduct Code>
<Quantity>12</Quantity>
<Price>59. 95</Price>
</ OrderDetail >
</ Dynam cDS>

We would like to emphasize that the DataSet object is the most important construct in ADO.NET.
Because DataSet does not tie to an underlying representation such as SQL Server or Microsoft
Access, it is extremely portable. Its data format is self-descaibed in its schema, and its data is in pure
XML. A DataSet is self-contained regardless of how it was created, perhaps by reading data from a
SQL Server, from Microsoft Access, from an external XML file, or even by being dynamically
generated as we have seen in an earlier example. This portable XML-based entity—without a doubt—
should be the new standard for data exchange.

Enough said about DataSet. Let's drill down from DataSet to DataTable.

5.3.2 DataTable

DataTable represents a table of data and thus contains a collection of DataColumns as a Columns
property and a collection of DataRows as a Rows property. The Columns property provides the
structure of the table, while the Rows property provides access to actual row data. Fields in the table
are represented as DataColumn objects, and table records are represented as DataRow objects. Here

is some sample code that dumps the name of each column as a row of headers, followed by each row
of data:

.NET Framework Essentials

/* Wal k the DataTable and display all columm headers
* along with all data rows.

*/

Dat aTabl e nmyTabl e = m ds. Tabl es["OrderDetai |l "];

/* Display all colum nanes. */
foreach(Dat aCol um c in myTabl e. Col ums) {
Console. Wite(c. Col umNane + "\t");

}
Console. WiteLine(""); // newine

/* Process each row. */
foreach(DataRow r in nmyTabl e. Rows) {

/* Display each colum. */

foreach(DataCol utm c¢ in myTabl e. Col ums) {
Console. Wite(r[c] + "\t");

}

Consol e.WiteLine(""); // newine

}

Here is the output of that code:

fk OderlD Pr oduct Code Quantity Price
101 Item 100 12 59. 95
101 Item 200 1 9. 25
102 Item 200 3 9. 25

Typically, a DataTable has one or more fields serving as a primary key. This functionality is exposed
as the PrimaryKey property. Because the primary key might contain more than one field, this property
is an array of DataColumn objects. We revisit this excerpt of code here to put things in context. Note
that in this example, the primary key consists of only one field, hence the array of size one.

/'l Register the colum "OrderI D' as the primary key of table "Order"
Dat aCol um[] keys = new Dat aCol um[1];

keys[0] = m.ds. Tables["Order"]. Colums["OrderlI D"];

m ds. Tabl es["Order"]. Pri maryKey = keys;

5.3.2.1 Relations and constraints

Relations define how tables in a database relate to each other. The DataSet globally stores the
collection of relations between tables in the Relations property; however, each of the tables
participating in the relation also has to know about the r elationship. ChildRelations and
ParentRelations, two properties of the DataTable object, take care of this. ChildRelations enumerates
all relations that this table participates in as a master table. ParentRelations, on the other hand, lists
the relations in which this table acts as a slave table. We provide more information on the topic of
relations when we explain the DataRelation object in an upcoming section of this chapter.

While we are on the topic of tables and relationships, it is important to understand how to set up
constraint enforcements. There are two types of constraints that we can set up and enforce,
UniqueConstraint and ForeignKeyConstraint. UniqueConstraint enforces the uniqueness of a field
value for a table. ForeignKeyConstraint enforcesrules on table relationships. For
ForeignKeyConstraint, we can set up UpdateRule and DeleteRule to dictate how the application
should behave upon performing updat e or del et e on a row of data in the parent table.

Table 5-1 shows the constraint settings and behavior of ForeignKeyConstraint rules.

Table 5-1. Constraint types and behaviors

Setting Behavior
None Nothing.

Dependent rows (identified by foreignkey) are deleted/updated when parent row is
deleted/updated.

SetDefault|Foreign keys in dependent rows are set to the default value when parent row is deleted.
SetNull Foreign keys in dependent rows are set to null value when parent row is deleted.

Cascade

Constraints are activated only when the EnforceConstraint property of the DataSet object is set to
true.

5.3.3 DataView

The DataView object is similar to a view in conventional database programming. We can create
different customized views of a DataTable, each having different sorting and filtering criteria. Through
these different views, we can traverse, search, and edit individual records. This ADO.NET concept is
the closest to the old ADO recordset. In ADO.NET, DataView serves another important role—data
binding to Windows Forms and Web Forms. We show the usage of DataView when we discuss data
binding on Windows Forms and Web Forms in Chapter 7 and Chapter 8.

5.3.4 DataRelation

A DataSet object as a collection of DataTable objects alone is not useful enough. A collection of
DataTable objects returned by a server component provides little improvement upon the chained
recordset in previous versions of ADO. In order for your client application to make the most of the
returned tables, you also need to return the relations between these DataTables. This is where the
DataRelation object comes into play.

With DataRelation, you can define relationships between the DataTable objects. Client components
can inspect an individual table or navigate the hierarchy of tables through these relationships. For
example, you can find a particular row in a parent table and then traverse all dependent rows in a child
table.

The DataRelation contains the parent table name, the child table name, the parent table column
(primary key), and the child table column (foreign key).

By having multiple DataTables and DataRelations within the DataSet, ADO.NET allows for a much

more flexible environment where consumers of the data can choose to use the data in whichever way
they wish.

One example might be the need to display all information about a particular parent table and all of its
dependent rows in a child table. You have ten rows in the parent table. Each of the rows in the parent
table has ten dependent rows in the child table. Let's consider two approaches to getting this data to
the data consumer. First, we will justuse a join in the query string:

Sel ect
Order. Cust oner Fi rst Nanme, Order. Custoner Last Nane, O der. O der Dat e,
OrderDet ai | . Product Code, OrderDetail.Quantity, OrderDetail.Price
from
Order, O derDetail
where Order.OrderI D = OrderDetail.fk_OrderID

The result set contains 100 rows, in which each group of ten rows contains duplicate information about
the parent row.

.NET Framework Essentials

A second approach is to retrieve the list of rows from the parent table first, which would be ten rows:

Sel ect

Order. Order | D,

Order. Custoner First Name, Order. Custoner Last Nane, Order. OrderDate
from

Or der

Then for each of the ten rows in the parent table, you would retrieve the dependent rows from the child
table:

Sel ect

OrderDet ai | . Product Code, OrderDetail.Quantity, OrderDetail.Price
from

OrderDetail where fk_OrderlD = thisOrderlD

This second approach is less of a resource hog since there is no redundant data; however, you end
up making 11 round-trips (one time for the parent table, and 10 times for each parent of the child table).

It's better to get the parent table, the child table, and the relation between them using one round-trip,
without all the redundant data. This is one of the biggest benefits that DataSet brings. The following
block of code demonstrates the power of having ta bles and relationships:

/*
* Gven an order id, display a single order.
*/
public static void DisplaySingl eOrder(DataSet mds, int iOderlD) {
Deci mal runni ngTotal = 0;
Deci mal |ineTotal = O;
Deci mal dPrice = O;
int iQy = 0;

Dat aTabl e oTabl e = m.ds. Tabl es["Order"];

/1 Find an order fromthe Order table.
Dat aRow oRow = oTabl e. Rows. Fi nd(i Order|D);

/* Navigate to the OrderDetail table

* through the Order_Details relationship.

*/
Dat aRow{] arrRows = oRow. Get Chi |l dRows(" Order _OrderDetail");

/* Display the order information. */
Console.WiteLine ("Order: {0}", iOderlD);
Console. WiteLine ("Nane: {0} {1}",
oRow " Custoner Fi rst Name"]. ToString(),
oRow " Cust onmer Last Nanme"]. ToString());
Console. WiteLine ("Date: {0}", oRow "Date"].ToString());

/* Di splay and calculate line total for each item

*

foi(int i =0; i < arrRows.Length; i++) {
foreach(Dat aCol utm myCol um in mds. Tabl es["OrderDetail "]. Col unms)
i Console. Wite(arrRows[i][myColum] + " ");

97

iy = System I nt32. Parse(arrRows[i]["Quantity"].ToString());
dPrice = System Deci mal . Parse(arrRows[i]["Price"].ToString());

lineTotal = iQy * dPrice;
Console. WiteLine("{0}", lineTotal);

/* Keep a running total. */
runni ngTotal += |ineTotal;

}

/* Display the total of the order. */
Consol e. WiteLine("Total: {0}", runningTotal);

}

DisplaySingleOrder finds a single row in the Order table with a given order ID. Once this row is found,
we ask the row for an array of dependent rows from the OrderDetail table according to the

Order _OrderDet al | relationship. With the returned array of DataRows, we then proceed to display
all fields in the row. We also calculate thel i neTot al value based on the quantity ordered and the
price of the item, as well as keeping ar unni ngTot al for the whole order. The following shows the
output from the DisplaySingleOrder function:

Order: 101

Name: John Doe

Date: 5/1/2001 12:00: 00 AM
101 Item 100 12 59.95 719.4
101 Item200 1 9.25 9.25
Total : 728.65

5.4 Managed Providers

Managed provider is a term used for a group of .NET components that implement a fixed set of
functionality set forth by the ADO.NET architecture. This enforces a common interface for accessing
data. In order to build our own managed provider, we must provide our own implementation of
System.Data.Common.DbDataAdapter objects and implement interfaces such as IDbCommand,
IDbConnection, and IDataReader. We are not building our own managed provider here; however, we
do dive into each of these classes and interfaces in this section.

Most of the time, developers don't have to know how to implement managed providers, even though
this might increase their productivity with regard to ADO.NET. Understanding how to use the stock
managed providers alone is sufficient to develop your enterprise application. Microsoft provides two
managed providers in its current release of ADO.NET: OLE DB and SQL. The OLE DB managed
provider comes with OleDbConnection, OleDbCommand, OleDbParameter, and OleDbDataReader.
The SQL Server managed provider comes with a similar set of objects, whose names start with
SqlClient instead of OleDb, as illustrated inFigure 5-3. The implementation of this core function set
for managed providers is packaged in the System.Data.Common namespace, while the interfaces for
the data adapter classes are in System.Data. The implementation for the ADO managed provider is in
System.Data.OleDb, and the SQL managed provider is in System.Data.SqlClient.

Figure 5-3. Managed provider framework class hierarchy

.NET Framework Essentials

[iDbcoomand |

| |
0leDb{emmand I I SqlCommand

[iDbommscin |

|
| 1
I DkeDbonneclion I I SqlCannection

| iDosoPorameterCallecson |

|
| |

I 0leDbParameterColledion I I SqlParameter{ollection
| | DataReadsr |
|
| |
[OkDbaicReodes | [SolDotoReoder
I [BDeinAdopter I
|
| |
| ODbdoatdaper | [SqiDoiaddoper |

Both of the included managed providers implement a set of interfaces that access the appropriate data
store. The OLE DB provider relies on OLE DB as an access layer to a broad variety of data sources,
including Microsoft SQL Server. For performance reasons, the SQL provider uses a proprietary
protocol to communicate directly with SQL Server. Regardless of how the data is obtained, the
resulting dataset remains the same. This clean separation of managed providers and the XML-based
dataset helps ADO.NET achieve portable data.

Figure 5-3 shows the base classes and the two implementations of managed provider: OLE DB and
SQL. Because all managed providers, including OLE DB and SQL, adhere to a fixed, common set of
interfaces (IDbCommand, IDBConnection, IDataParameterCollection, IDataReader, and

DbDataAdapter), you can easily adapt your application to switch managed providers as the need
arises.

5.4.1 Connection

Both OleDbConnection and SglConnection implement System.Data. IDbConnection and thus inherit

properties such as the connection string and the state of the connection. They implement the core set
of methods specified by IDbConne ction, including Open and Close.

Unlike with the ADO Connection object, transaction support for the ADO.NET connection object has
been moved to a Transaction object (such as OleDbTransaction and SqlTransaction). We cannot
assume that the transaction scope is the same as the connection scope. For example, we can have
transactions that overlap multiple connections. To create a new transaction, execute the
BeginTransaction() method of the OleDbConnection or SglConnection object. This returns an
IDbTransaction implementation that supports transaction -oriented functionality such as Commit and
Rollback. The SqlTransaction also supports saving checkpoints so that we can rollback to a specific
checkpoint instead of rolling back the whole transaction. Since the ADO version uses OLE DB to get to
the data, it also has a Provider property with a defaulted value of MSDASQL. Table 5-2 lists the
supported providers for ADO managed providers.

Table 5-2. ADO managed providers

Driver Provider
SQLOLEDB Microsoft OLE DB Provider for SQL Server
MSDAORA Microsoft OLE DB Provider for Oracle
JOLT OLE DB Provider for Jet

Again, if you examine the list of methods that both OleDbConnection and SglConnection support, you
will find that the functionality is very much the same as the old ADO Connection object's. However,
neither OleDbConnection nor SqlConnection allows SQL statements or providerspecific text
statements to be executed directlyany more. In other words, Execute() is no longer supported by the
Connection object. This is a better way for distributing functionality between classes. All execution is
done through the Command object, which is discussed in the next section along withhow to initiate a
connection.

5.4.2 The Command and Data Reader Objects

Fortunately for ADO developers, ADO.NET's SqlCommand and OleDbCommand objects behave like
ADOQO's Command object; however, in ADO.NET, the Command objects are the only way we can make
execution requests to insert, update, and delete data. This makes it easier to learn the object model.

Developers are not faced with as many ways of doing the same things, as in the case (with ADO) of
whether to execute the query through a Connection, Command, or even a Recordset object.

5.4.2.1 Command execution

All commands are associated with a connection object through the SqlCommand's or the
OleDbCommand's Connection property. Think of the connection object as the pipeline between the
data-reading component and the database back end. In order to execute a command, the active
connection has to be opened. The command object also accepts parameters to execute a stored

procedure at the back end. The top left of Figure 5 -5 shows the relationships between command,
connection, and parameters objects.

There are two types of execution. The first type is a query command, which returns an IDataReader
implementation. It is implemented by the ExecuteReader() method. The second type of command
typically performs an update, insert, or deletion of rows in a database table. This type of execution is
implemented by the ExecuteNonQuery() method.

One of the main differences between ADO.NET's Command objects and ADO's Command object is
the return data. In ADO, the result of executing a query command is a recordset, which contains the
return data in tabular form. In ADO.NET, however, recordsets are no longer supported. The result of
executing a query command is now a data reader object (see the following section). This data reader
object can be an OleDbDataReader for OLE DB, SqlDataReader for SQL Server, or any class
implementing the IDataReader for custom reading needs. Once you've obtained a valid data reader
object, you can perform a Read operation on it to get to your data.

Employing the command, connection, and data reader objects is a low-level, direct way to work with
the managed provider. As you will find out a little later, th e data adapter encapsulates all this low-level
plumbing as a more direct way to get the data from the data source to your disconnected dataset.

5.4.2.2 The data reader object

The data reader is a brand new concept to ADO developers, but it is straightforward. A data reader is
similar to a stream object in object-oriented programming (OOP). If you need to access records in a
forward-only, sequential order, use a data reader because it is very efficient. Since this is a server -side
cursor, the connection tothe server is open throughout the reading of data. Because of this continually

10C

.NET Framework Essentials

open connection, we recommend that you exercise this option with care and not have the data reader
linger around longer than it should. Otherwise, it might affect the scalability of your application.

The following code demonstrates basic use of OleDbConnection, OleDbCommand and
OleDbDataReader. Though we're using the OLE DB managed provider here, the connection string is
very similar to the one we used earlier for ADO.2!

Bl The syntax to create a new command object might change to oCnd=o0Conn. Creat eCommand(); when ADO.NET is finally
released.

usi ng System
usi ng System Dat a;
usi ng System Dat a. O eDb;

public class pubsdenp {
public static void Main() {

/* An OLE DB connection string. */
String sConn =
"provi der=sql ol edb; server=(l ocal) ; dat abase=pubs; ui d=sa; pwd=; ";

/* An SQL statenent. */
String sSQ. = "select au_fnane, au_l name, phone from authors";

/* Create and open a new connection. */
O eDbConnecti on oConn = new O eDbConnecti on(sConn);
oConn. Open();

/* Create a new command and execute the SQL statenent. */
O eDbCommand oCnmd = new O eDbCommand(sSQL, oConn);
O eDbDat aReader oReader = oCnd. Execut eReader();

/* Find the index of the colums we're interested in. */
int idxFirstNane = oReader. Get Ordi nal ("au_fnanme");

int idxLastNane = oReader. Get Ordi nal ("au_l nane");

i nt idxPhone = oReader. Get Ordi nal ("phone");

/* Retrieve and display each colum using their columm index. */
whi | e(oReader. Read()) {
Console. WiteLine("{0} {1} {2}",
oReader . Get Val ue(i dxFi r st Nane),
oReader . Get Val ue(i dxLast Nane) ,
oReader . Get Val ue(i dxPhone));

The code opens a connection to the local SQL Server (as the user sa with a blank password) and
issues a query for first name, last name, and phone number from the authors table in the pubs
database. If you don't have the pubs database installed on your system, you can load and run
instpubs.sql in Query Analyzer (instpubs.sql can be found under the MSSQL\Install directory on your
machine). The following example uses SqlClient to get the same information:

usi ng System
usi ng System Dat a;
usi ng System Data. Sql Cl i ent;

public class pubsdeno {

101

public static void Main() {

/* A SQ Server connection string. */
String sConn = "user i d=sa; passwor d=; dat abase=pubs; server=(local)";

[* An SQL statenment. */
String sSQL = "sel ect au_fnane, au_l nane, phone from authors”;

/* Create and open a new connection. */
Sql Connection oConn = new Sqgl Connecti on(sConn);
oConn. Cpen() ;

/* Create a new command and execute the SQ. statenment. */
Sql Conmand oCnd = new Sgl Cormand(sSQL, oConn);
Sql Dat aReader oReader = oCnd. Execut eReader();

/* Find the index of the colums we're interested in. */
int idxFirstName = oReader. Get Ordinal ("au_fnane");

i nt idxLastNane = oReader. Get Ordi nal ("au_Il nanme");

i nt idxPhone = oReader. CGet Ordi nal ("phone");

/* Retrieve and display each colum using their colum index. */
whi | e(oReader. Read()) {
Consol e. WiteLine("{0} {1} {2}",
oReader . Get Val ue(i dxFi r st Nane) ,
oReader . Get Val ue(i dxLast Nane) ,
oReader . Get Val ue(i dxPhone));

}
}

5.4.3 The DataAdapter Object

Along with the introduction of data reader, ADO.NET also brings the DataAdapter object, which acts
as the bridge between the data source and the disconnected DataSet. It contains a connection and a
number of commands for retrieving the data from the data store into one DataTable in the Data Set and
updating the data in the data store with the changes currently cached in the DataSet. Even though
each DataAdapter maps only one DataTable in the DataSet, you can have multiple adapters to fill the
DataSet object with multiple DataTables. The class hierarchy of DataAdapter is shown in Figure 5-4.
Both OleDbDataAdapter and SqglDataAdapter are derived from DbDataAdapter, which in is in turn
derived from DataAdapter abstract class. This DataAdapter abstract class implements the

IDataAdapter interface, which specifies that it supports Fill and Update. IDataAdapter is specified in
the System.Data namespace, as is the DataSet itself.

Figure 5-4. DataSetCommand class hierarchy
|DotoAdapler D—I Dofafdopter I

[sduatdoprer |

|
| |
OleDbDotabdopler | | SqlDatafidugter

OleDbDataAdapter and SqglDataAdapter can fill a DataSet with rows and update the data source when
you make changes to the dataset. For examge, you can use OleDbAdapter to move data from an
OLE DB provider into a DataSet using the OleDbDataAdapter.Fill() method. Then you can modify the

102

.NET Framework Essentials

DataSet and commit the changes you made to the underlying database using the
OleDbDataAdapter.Update() meth od. SqglDataAdapter supports the same methods. These adapters
act as the middleman bridging the data between the database back end and the disconnected
DataSet.

For data retrieval, a data adapter uses the SQL SELECT command (exposed as the SelectCommand
property). This SELECT command is used in the implementation of the IDataAdapter interface's Fill

method. For updating data, a data adapter uses the SQLUPDATE, | NSERT, and DELETE commands
(exposed as the UpdateCommand, InsertCommand, and DeleteCommand properties).

Along with the Fill and Update methods from DbDataAdapter class, both OleDbDataAdapter and
SqlDataAdapter also inherit the TableMappings property, a collection of TableMapping objects that
enable the mapping of actual database column names to user-friendly column names. This further
isolates the DataSet from the source where the actual data comes from. Even table names and
column names can be mapped to more readable names, making it easier use the DataSet. The
application developer can be more prod uctive at what he does best, which is to implement business

logic and not to decipher cryptic database column names. Figure 5 -5 shows the relationship between
managed-provider components.

Figure 5-5. OleDbDataAdapter and supporting classes
[_Oebbtommeni]

QleDbConnedtion OheDbErrorCallection
DleDbParamederColleciion 0leDbErrer
DleDbParametar

DleDbDasaReader
| OleDbDabatdapher |

—I 0eDbCommand i SeledtCommand

—I 0eDbCommand | InsertCommand

—— OleDbCommand | UpdateCommand

—— OleDbCommand | DeleteCommond

—l DatalableMapging Colletion |

DennTablaMapging

DataCalumnMappinglallection]

Out of the four commands in the IDbDataAdapter object, only the SELECT command is required. The
rest of the commands are optional since they can be generated automatically by the system. However,

you can choose to provide your own command if you wish. A typical usage of the data adapter
involves the following steps:

Create a d ata-adapter object (OleDbDataAdapter or SqlDataAdapter)
Set up the query string for the internal SelectCommand object

103

Set up the connection string for the SelectCommand's Connection object

(Optional) Set up the InsertCommand, UpdateCommand, or DeleteCommeand query strings
and connections

Call Fill(') to fill the given dataset with the results from the query string

(Optional) Make changes and call the adapter's Update() method with the changed DataSet

The following block of code demonstrates these steps:

public DataSet CenerateDS() {

}

/* Create the DataSet object. */
Dat aSet ds = new Dat aSet (" DBDat aSet ") ;
String sConn =
"provi der =SQLOLEDB; server =(| ocal) ; dat abase=pubs; ui d=sa; pwd=; ";

/* Create the DataSet adapters. */
O eDbDat aAdapt er dsAdapterl =
new O eDbDat aAdapter("sel ect * from aut hors", sConn);

O eDbDat aAdapt er dsAdapter2 =
new O eDbDat aAdapter("select * fromtitles", sConn);

O eDbDat aAdapt er dsAdapter3 =
new O eDbDat aAdapter("select * fromtitleauthor", sConn);

/* Fill the data set with three tables. */
dsAdapterl.Fill (ds, "authors");
dsAdapter2.Fill(ds, "titles");
dsAdapter3.Fill(ds, "titleauthor");

/1 Add the two rel ations between the three tables. */
ds. Rel ati ons. Add("aut hors2titl eauthor",
ds. Tabl es["aut hors"]. Col ums["au_id"],
ds. Tabl es["titl eauthor"]. Col ums["au_id"]);

ds. Rel ations. Add("titles2titleauthor",
ds. Tables["titles"].Colums["title_id"],
ds. Tabl es["titl eauthor"]. Colums["title_id"]);

/! Return the DataSet
return ds;

This is a demonstration of constructing a dataset with three tables from the sample pubsdatabase.

The DataSet also contains two relationships that tie the three tables together. Let's take a look at the
dataset in XML by trying out the next couple lines of code:

Dat aSet ds = CGenerateDS();
ds. WiteXm ("DBDat aSet.xm ", Xm WiteMde. WiteSchemm);

The content of DBDataSet.xml(with some omission for brevity) is shown next:

<?xm version="1.0" standal one="yes"?>
<DBDat aSet >

<xsd: schema i d="DBDat aSet" tar get Nanmespace="" xm ns=""
xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schema"
xm ns: nsdat a="urn: schenmas- m crosoft- com xm - nsdat a" >
<xsd: el enent nanme="DBDat aSet" nsdat a: | sDat aSet ="true">
<xsd: compl exType>

104

.NET Framework Essentials

<xsd: choi ce maxCccur s="unbounded" >

<xsd: el ement name="aut hors" >
<xsd: conpl exType>
<xsd: sequence>
<l-- colums sinplified for brevity -->
<xsd: el ement nane="au_i d" type="xsd:string" />
<xsd: el ement nane="au_l name" type="xsd:string" />
<xsd: el ement nane="au_fname" type="xsd:string" />
<xsd: el enent nane="phone" type="xsd:string" />
<xsd: el enent nanme="address" type="xsd:string" />
<xsd: el ement nane="city" type="xsd:string" />
<xsd: el enent nane="state" type="xsd:string" />
<xsd: el enent nane="zi p" type="xsd:string" />
<xsd: el enment nanme="contract" type="xsd: bool ean" />
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

<l-- titles and titleauthor omtted for brevity -->

</ xsd: choi ce>
</ xsd: conpl exType>

<xsd: uni que nanme="Constraint1">
<xsd: sel ector xpath=".//authors" />
<xsd: field xpath="au_id" />

</ xsd: uni que>

<xsd: uni que name="titles_Constraintl"
nmsdat a: Constr ai nt Name="Constrai nt 1" >
<xsd: selector xpath=".//titles" />
<xsd:field xpath="title_id" />
</ xsd: uni que>

<xsd: keyref name="titles2titl eauthor”
refer="titles_Constraintl">
<xsd: sel ector xpath=".//titleauthor" />
<xsd:field xpath="title_id" />
</ xsd: keyr ef >

<xsd: keyref nane="aut hors2titl eauthor"
refer="Constraint1">
<xsd: sel ector xpath=".//titleauthor" />
<xsd:field xpath="au_id" />
</ xsd: keyr ef >

</ xsd: el enent >
</ xsd: schema>

<l-- Most rows renoved for brevity -->

<aut hor s>
<au_i d>899- 46-2035</ au_i d>
<au_l| nane>Ri nger </ au_| nane>
<au_f nane>Anne</ au_f name>
<phone>801 826- 0752</ phone>
<address>67 Seventh Av. </ address>
<city>Salt Lake City</city>
<st at e>UT</ st at e>
<zi p>84152</ zi p>

105

<contract>true</contract>

</ aut hor s>

<titles>

<title_id>PS2091</title_id>
<title>ls Anger the Eneny?</title>
<type>psychol ogy </type>

<pub_i d>0736</ pub_i d>
<price>10.95</price>
<advance>2275</ advance>

<royal ty>12</royal ty>

<yt d_sal es>2045</ytd_sal es>

<not es>Carefully researched study of the effects of strong
enptions on the body. Metabolic charts included. </ notes>

<pubdat €>1991- 06- 15T00: 00: 00. 0000</ pubdat e>

</[titles>

<title_ id>MC3021</title_id>

<title>The Gournet M crowave</title>
<type>nod_cook</type>

<pub_i d>0877</ pub_i d>

<price>2.99</price>

<advance>15000</ advance>

<royal ty>24</royal ty>

<yt d_sal es>22246</ytd_sal es>

<not es>Tradi ti onal French gournet recipes adapted for
m crowave cooki ng. </ not es>

<pubdat €>1991- 06- 18T00: 00: 00. 0000</ pubdat e>

</[titles>

<titleauthor>

<au_i d>899-46- 2035</ au_i d>
<title_id>MC3021</title_id>
<au_or d>2</au_ord>

<royal typer >25</royal typer>

</titleauthor>
<titl eauthor>

<au_i d>899-46- 2035</ au_i d>
<title_ id>PS2091</title_id>
<au_ord>2</au_ord>

<royal typer >50</royal t yper >

</titleauthor>

</ DBDat aSet >

Each of the tables is represented as an<xsd: el enent nane="t abl e

name" >, ..

noder n

</ xsd: el ement > tag pair that contains column definitions. In addition to one

xsd: el ement for each table, we have one xsd: uni que for each key and onexsd: keyr ef for each
relationship. Thexsd: uni que specifies the key of the parent table in a relationship. The tag

xsd: keyref is used for child tables in a relationship. This xsd: keyr ef serves as the foreign key
and refers to the key in the parent table. The reason the schema shows an xsd: uni que, instead of
xsd: key as in the previous example (the Order and OrderDetail relationship), is because in this
example, we did not explicitly set the primary key for the parent table. You should try the following
block of code to see how the generated schema changed:

déAdapterf%. Fill(ds, "titleauthor");

Dat aCol um[] keys = new Dat aCol um|[1];
keys[0] = ds. Tabl es["authors"]. Col ums["au_id"];
ds. Tabl es["aut hors"] . Pri maryKey = keys;

106

.NET Framework Essentials

For brevity, we've stripped down the data portion of the XML to contain just one author, Anne Al bert,
and two books she authored.

We can have many different DataAdapters populating the DataSet. Each of these DataAdapters can
be going against a completely different data source or data server. In other words, you can construct a

DataSet object filled with data that is distributed across multiple servers. In the previous example, we
have three different DataAdapters; however, all of them are going to the same server.

5.5 DataSet and XML

XML has rapidly gained popularity. Enterprise applications are using XML as the main data format for
data exchanges.

ADO.NET breaks away from the COM-based recordset and employs XML as its transport data format.
Because XML is platform independent, ADO.NET extends the reach to include anyone who is able to
encode/decode XML. Thisis a big advantage over ADO because a COM-based recordset is not
platform independent.

5.5.1 XML parsers

Even though XML is text based and readable by humans, you still should have some way of
programmatically reading, inspecting, and changing XML. This is the job of XML parsers. There are

two kinds of XML parsers: tree-based and event-based. Depending on your needs, these two types of
parsers should complement each other and serve you well.

Tree -based XML parsers read the XML file (or stream) in its entirety to construct a tree of XML nodes.
Think of these XML nodes as your XML tag:

<car >
<vi n>VI 00000383148374</ vi n>
<make>Acur a</ make>
<nodel > nt egr a</ nodel >
<year >1995</ year >

</ car>

When parsed into a tree, this information would have one root node—car ; and under car, there are
fournodes: vi n,make, nodel , and year. As you might have suspected, if the XML stream is very

large in nature, then a tree -based XML parser might not be a good idea. The tree would be too large
and consume a lot of memory.

An event-based XML parser reads the XML stream as it goes. SAX (Simple API for XML) is a
specification for this kind of parsing. The parser raises events as it reads the data, notifying the
application of the tag or text the parser just read. It does not attempt to create the complete tree of all
XML nodes as does the tree-based parser. Therefore, memory consumption is minimal. This kind of
XML parser is ideal for going through large XML files to look for small pieces of data.

Microsoft implements both types of parsers in its XML parser, MSXML. Because XML is so powerful,

Microsoft, among other industry leaders, incorporates XML usage in almost all the things they do. That
includes, but is not limited to, the following areas:

XML+HTTP in SOAP
XML+SQL in SQL2000
XML in BizTalk
XML+DataSet in ADO.NET

107

XML in Web Services and Web Services Discovery (DISCO) (seeChapter 6)

In this chapter, we discuss XML+Dataset in ADO.NET. XML in Web Services will be examined in the

next chapter. Because XML is used everywhere in the .NET architecture, we also provide a high-level
survey of the XML classes.

5.5.2 XML Classes

To understand the tree-based Microsoft XML parser, which supports the Document Object Model
(DOM Level 2 Core standard), there are only a handful of objects you should know:

XmINode and its derivatives
XmlINodelList, as collection XmINode
XmINamedNodeMap, as a collection of XmlAttribute

We will walk through a simple XML exam ple to see how XML nodes are mapped into these objects in
the XML DOM.

5.5.2.1 XmINode and its derivatives

XmINode is a base class that represents a single node in the XML document. In the object model,
almost everything derives from XmlINode. This includes: XmlAttribute, XmIDocument, XmlElement,
and XmlText, among other XML node types.

The following XML excerpt demonstrates mapping of XML tags to the node types in the DOM tree:

<books>
<book category="How To">
<title>How to drive in DC netropolitan</title>
<aut hor>Jack Dani el </ aut hor >
<price>19.95</price>
</ book>
<book category="Fiction">
<title>Bring down the fence</title>
<aut hor>Jack Sm t h</aut hor>
<price>9.95</price>
</ book>
</ books>

After parsing this XML stream, you end up with the tree depicted in Figure 5-6. It contains one root

node, which is just a derivative of XmINode. This root node is of type XmIDocument. Under this books
root node, you have two children, also derivatives of XmINode. This time, they are of type XmlElement.

Under eachbook element node, there are four children. The first child is cat egory . Thiscat egory
node is of type XmlAttribute, a derivative of XmINode. The next three children are of type XmlElement:
title,aut hor,andpri ce. Each of these elements has one child of type XmIText.

Figure 5-6. Tree representation of the XML document

108

.NET Framework Essentials

¥mlDocument
Books
Hinlode XmiNoce
Rock Boak
R
“Fictian" Tt Halbor Fre
HnlText
N Kl Tezed HomlTeset
Bringdown |y G 995"

the fence”

As a base class, XmINode supports a number of methods that aid in the constructing of the XML

document tree. These methods include: AppendChild(), PrependChild(), InsertBefore(), InsertAfter(),
and Clone().

XmINode also supports a group of properties that aid in navigation within the XML document tree.
These properties include: FirstChild, NextSibling, PreviousSibling, LastChild, ChildNodes, and

ParentNode. You can use the ChildNodes property to navigate down from the root of the tree. For
traversing backward, use the ParentNode property from any node on the tree.

5.5.2.2 XmINodeList

Just as an XmINode represents a single XML element, XmINodeList represents a collection of zero or
more XmINodes. The ChildNodes property of the XmINode is of type XmINodeList. Looking at the root
node books , we see that its ChildNodes property would be a collection of two XmINodes.

XmlINodeList supports enumeration, so we can iterate over the collection to get to each of the
XmlINode objects. We can also ind ex into the collection through a zero-based index.

Each of the book XmIElement objects would have a ChildNodes collection that iterates overt i t | e,
aut hor, andpri ce XmlElements.

5.5.2.3 XmINamedNodeMap

Similar to XmINodeList, XmINamedNodeMap is also a collection object. XmINamedNodeMap is a
collection of XmlAttribute objects that enable both enumeration and indexing of attributes by name.
Each XmINode has a property named Attributes. In the case of the book elements, these collections
contain only one atribute, which iscat egory.

5.5.2.4 XmIDocument

In addition to all methods and properties supported by XmINode, this derivative of XmINode adds or
restricts methods and properties. Here, we inspect only XmIDocument as an example of a derivative of
XmINode.

XmIDocument extends XmINode and adds a number of helper functions. These helper functions are
used to create other types of XmINodes such as XmlAttribute, XmlComment, XmlElement, and

109

XmlText.. In addition to allowing for the creation of other XML node types, XmIDocument also provides
the mechanism to load and save XML contents.

The following code demonstrates how an XmlDocument is programmatically generated with DOM:

usi ng System
using System Xnml ;

public class Xm Denmo {
public static void Main() {

/1 Code to denobnstrate creating of Xm Docunent progranmatically
Xm Docunment xml Dom = new Xml Docunent ();

xm Dom AppendChi | d(xm Dom Cr eat eEl ement ("", "books", ""));

Xm El enent xnml Root = xm Dom Docunent El enent ;

Xm El ement xm Book;

Xm El ement xm Title, xm Aut hor, xm Price;

Xm Text xm Text;

xm Book= xm Dom Cr eat eEl ement ("", "book", "");
xm Book. Set Attri bute("category", "", "How To");
xm Title = xm Dom Cr eat eEl enent ("", "title", "");

xm Text = xml Dom Creat eText Node("How to drive in DC netropolitan");
xm Title. AppendChi | d(xm Text);
xm Book. AppendChi | d(xm Title);

xm Aut hor = xm Dom Cr eat eEl enent ("", "author", "");
xm Text = xm Dom Cr eat eText Node("Jack Daniel");

xm Aut hor . AppendChi | d(xml Text) ;

xm Book. AppendChi | d(xm Aut hor) ;

xm Price = xm Dom Cr eat eEl enent ("", "price", "");
xm Text = xm Dom Cr eat eText Node("19. 95");

xm Price. AppendChi | d(xml Text);

xm Book. AppendChi | d(xm Price);

xm Root . AppendChi | d(xm Book) ;

xm Book= xm Dom Cr eat eEl enent ("", "book", "");
xm Book. Set Attri bute("category", "", "Fiction");
xm Title = xnml Dom Cr eat eEl enrent ("", "title", "");

xm Text = xm Dom Cr eat eText Node("Bri ng down the fence");
xm Ti tle. AppendChi | d(xm Text);
xm Book. AppendChi | d(xm Title);

xm Aut hor = xm Dom Cr eat eEl enent ("", "author", "");
xm Text = xml Dom Cr eat eText Node("Jack Smith");

xm Aut hor . AppendChi | d(xm Text);

xm Book. AppendChi | d(xml Aut hor) ;

xm Price = xm Dom Creat eEl enent ("", "price", "");
xm Text = xm Dom Cr eat eText Node("9. 95");

xm Price. AppendChi | d(xml Text) ;

xm Book. AppendChi | d(xm Price);

xm Root . AppendChi | d(xm Book) ;

Consol e. WiteLi ne(xm Dom | nner Xm) ;

11C

.NET Framework Essentials

}

The XmIDocument also supports LoadXml and Load methods, which build the whole XML tree from
the input parameter. LoadXml takes a string in XML format, whereas Load can take a filename, a
TextReader, or an XmlIReader. The following example continues where the previous one left off. The

XML tree is saved to a file named books.xml. Then this file is loaded back into a different XML tree.
This new tree outputs the same XML stream as the previous one:

xm Dom Save("books. xm ") ;

Xml Docunent xml Don2 = new Xml Docunent () ;
xm Don2. Load(" books. xm ") ;

Consol e. WiteLine(xm Don2. | nner Xm) ;

5.5.2.5 XmlIReader

The XmlIReader object, which currently supports XML 1.0, is a fast, noncached, forward-only way of
accessing streamed XML data. There are two derivatives of XmIReader: XmITextReader and
XmINodeReader. Both of these readers read XML one tag at a time. The only difference between the
two is the input to each reader. As the name implies, XmITextReader reads a stream of pure XML text.
XmiINodeReader reads a stream o f nodes from an XmlDocument. The stream can start at the

beginning of the XML file for the whole XmIDocument or only at a specific node of the XmIDocument
for partial reading.

Consider the following XML excerpt for order processing. There are two orders, each with two or more
items:

<Or ders>

<Order id="ABCO0O1">

<ltem code="101" qty="3" price="299.00">17in Monitor</Itenr
<Item code="102" qty="1" price="15.99">Keyboard</Iten>
<Item code="103" qty="2" price="395.95">CPU</I|tenp

</ Order >

<Order id="ABC002">

<ltem code="101b" qty="1" price="499.00">21in Mnitor</Iltenr
<ltem code="102" qty="1" price="15.99">Keyboard</Itenr

</ Order >

</ Order s>

The following block of code traverses and processes each order:
StringReader nyStream = new StringReader ("your XM. here");
Xm Text Reader xm Txt Rdr = new Xml Text Reader (nyStrean) ;

whi | e(xm Txt Rdr. Read())

i f(xm Txt Rdr. NodeType == Xnml NodeType. El ement
&& xm Txt Rdr. Nane == "Order")
{

}
}

public void ProcessOr der(Xn Text Reader reader)

ProcessOrder (xm Txt Rdr) ;

whi | e(! (reader. NodeType == Xm NodeType. EndEl enment
&& reader. Name == "Order")

111

&& reader.Read()) {
/'l Process Content of Order
}
}

Let's take a closer look at what is going on. Once we have established the XmITextReader object with
the stream of data from the string, all we have to do is loop through and perform a Read() operation
until there is nothing else to read. While we are reading, only when we come across a node of type
XmlIElement and a node named Or der do we start to process the order. Inside the ProcessOrder
function, we read and process all items inside an order until we encounter the end tag of Or der . In

this case, we return from the function and go back to looking for the next Or der tag to process the
next order.

The following block of code is similar to the last one, but it uses an XmINodeReader object instead of
an XmlTextReader object:

Xm Docunent doc = new Xml Docunment();

doc. LoadXm ("your XM. here");

Xm NodeReader nyXM_Reader = new Xml NodeReader (doc);
whil e (myXM_Reader. Read())

i f (nyXM_LReader . NodeType == Xm NodeType. El enent &&
my XM_Reader . Name == "Order")
{

}
}

ProcessOrder 2(nyXM_.Reader) ;

public void ProcessOrder2(Xml NodeReader reader)
{
whi | e(! (reader . NodeType == Xml NodeType. EndEl enent && reader. Name ==
"Order™)
&& reader.Read())
{

/1 Process Content of Order

}
}

5.5.2.6 XmIWriter

The XmlIWriter object, which currently supports XML 1.0, is a fast, noncached way of writing streamed
XML data. It also supports namespaces. The only derivative of XmIWriter is XmITextWriter.

XmlWriter supports namespaces by providing a number of overloaded functions that take a
namespace to associate with the element. If this namespace is already defined and there is an
existing prefix, XmlWriter automatically writes the element name with the defined prefix. Almost all
element-writing methods are overloaded to support namespaces.

The following code shows how to use an XmITextWriter object to write a valid XML file:

Xm TextWiter witer =
new Xm TextWiter("test.xm ", new System Text.ASCl | Encoding());
witer.Formatting = Formatting. | ndented;
writer.|lndentation = 4;
witer.WiteStartDocunment();
writer. WiteComent (" Coment");
witer. WiteStartEl enent (" H enent Nane", "myns");
writer. WiteStartAttribute("prefix", "attrName", "nmyns");
writer. WiteEndAttribute();

112

.NET Framework Essentials

writer. WiteEl enentString("El enment Nane", "nyns", "value");
writer. WiteEndEl ement();

writer.WiteEndDocunent();

writer.Flush();

writer.Close();

This produces the following XML document intest.xmt

<?xm version="1.0" encodi ng="us-ascii"?>

<!--Comment -->

<El ement Nane prefix:attrName="" xm ns:prefix="nyns" xm ns="nyns">
<pr efi x: El enent Nane>val ue</ prefi x: El enent Nane>

</ El ement Nane>

5.5.2.7 XslTransform

XslITransform converts XML from one format to another. It is typically used in data-conversion
programs or to convert XML to HTML for the purpose of presenting XML data in a browser. The
following code demonstrates how such a conversion takes place:

usi ng System

usi ng System Xml ; /1 Xml Text Witer
usi ng System Xm . Xsl ; /'l Xsl Transform
usi ng System Xnl . XPat h; /1 XPat hDocunent
using System | O /'l StreanReader

public class XSLDeno {
public static void Main() {
Xsl Transform xslt = new Xsl Transfornm();
xslt.Load(" XSLTenpl ate. xsl");
XPat hDocunment xDoc = new XPat hDocunent (" Books. xm ") ;
Xm TextWiter witer = new Xm Text Witer("Books. htm", null);
xslt. Transform(xDoc, null, witer);
witer.dose();
St reanReader stream = new StreanReader (" Books. html ") ;
Consol e. Wite(stream ReadToEnd());
}
}

The code basically transforms the XML in the Books.xml file, which we've seen earlier, into HTML to

be displayed in a browser. Figure 5-7 andFigure 5 -8 show the source XML and the output HTML
when viewed in a browser.

Figure 5-7. Books.xml shown in IE

B Bocemends and Settngs' hoangl|y Documents) BobSekEss o'y b =10 %]
fle [Vew Ppwkes Dwk e | = |
- <o oo D [H A Qs GiPseres Joeoeny | 3 =2 B

Agdtess: [2] CiDocurmnts s Sttings hoangliMy Documen ot tEss) CHIS ode!at afBacks_ s x| e [nis *

=
boak category="THaw To":
coHowe Lo drive in DS metropolitan:
cautoorsJack Danials aothions
rcecs 1990/ price
</bogkn
tagory= Fiction
title=Aring down the fencec/~ tHes
Ll Jack Bmith =00
cprices 9,95 pricec
Al k
|
& bone k= My Computer

113

Figure5-8. Books.html shown in IE

Lo
Fie BB e Fawdtes Tods Hel | @ |
i c % @A Q| Dfearh [Glfeotes ety | By O 0 - 5 2 B
Aefdress |9 | CilDoourments and Settinge hoanghfy DocumenksDok letE ssl OIS oode bed a2y Books, himd ﬂ c!"ﬁn Links "'_

=]
List of buoks
Title Author Price
How to drowe wn D metropobtan Jack Danel 15 95
Bang down the feace Jack Seith 295
=
] bone =l My Computer g

The template XSL file that was used to transform the XML is as follows:

<xsl :styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl:tenplate match = "/" >

<htm >
<head><title>A |ist of books</title></head>
<styl e>
. hdr { background- col or =#f f eedd; font-wei ght=bold; }
</styl e>
<body>
Li st of books
<t abl e styl e="border-col |l apse: col | apse" border="1">
<tr>
<td class="hdr">Title</td>
<td cl ass="hdr">Aut hor</td>
<td class="hdr">Price</td>
</[tr>
<xsl:for-each select="//books/book">
<tr>
<t d><xsl :val ue-of select="title"/></td>
<t d><xsl : val ue-of sel ect="author"/></td>
<t d><xsl :val ue-of select="price"/></td>
</[tr>
</ xsl| :for-each>
</t abl e>
</ body>
</htm >

</ xsl:tenpl ate>
</ xsl:styl esheet >

5.5.2.8 XmIDataDocument

One of the most important points in ADO.NET is the tight integration of DataSet with XML. DataSet
can easily be streamed into XML and vice versa, making it easy to exchange data with any other

components in the enterprise system. The schema of the DataSet can be loaded and saved as XML
Schema Definition (XSD), as described earlier.

XmlDataDocument can be associated with DataSet. The following code excerpt illustrates how such
an association takes place:

/1 construct the Xm DataDocunment with the DataSet
Xm Dat aDocunent doc = new Xnl Dat aDocunent (m_ds) ;
Xm NodeReader nmyXMLReader = new Xnl NodeReader (doc);

114

.NET Framework Essentials

whil e (nyXM.Reader.Read()) {
/'l process the node based on the values of the properties
/1 exposed by the Xnml NodeReader class such as NodeType, Nane, Val ue

}

The previous section describing DataSet has already shown you that once we have a DataSet, we can

persist the data inside the DataSet into an XML string or file. The previous code demonstrated how to
convert the DataSet intoan XmIDataDocument that we can manipulate in memory.

5.6 Summary

In summary, this chapter describes the core of ADO.NET. Having focused on the disconnected
dataset, ADO.NET enables us not only to build high-performance, scalable solutions for e commerce,
but also allows the applications to reach other platforms through the use of XML. This chapter serves

as a high-level survey into the classes that make up ADO.NET and serves to familiarize you with the
System.Xml library.

In the next chapter, we delve into building software as services. We will make use of ADO.NET as the
data-access and exchange mechanism in our software services.

115

116

.NET Framework Essentials

Chapter 6. Web Services

W eb Services allow access to software components through standard web protocols such as HTTP
and SMTP. Using the Internet and XML, we can now create software components that communicate
with others, regardless of language, platform, or culture. Until now, software developers have
progressed toward this goal by adopting proprietary componentized software methodologies, such as
DCOM; however, because each vendor provides its own interface protocol, integration of different
vendors' components is a nightmare. By substituting the Internet for proprietary transport formats and
adopting standard protocols such as SOAP, Web Services help software developers create building
blocks of software, which can be reused and integrated regardless of their location.

In this chapter, we describe the .NET Web Services architecture and provide examples of a web
service provider and several web service consumers.

6.1 Web Services in Practice

You may have heard the phrase "software as services" and wondered about its meaning. The term
service, in day-to-day usage, refers to what you get from a service provider. For example, youbring
your dirty clothing to the cleaner to use its cleaning service. Software, on the other hand, is commonly
known as an application, either off-the-shelf, shrink -wrapped, or a custom application developed by a
software firm. You typically buy the software (or in our case, build the software). It usually resides on

some sort of media such as floppy diskette or CD and is sold in a shrink-wrapped package through
retail outlets.

How can software be viewed as services? The example we are about to describe might seem far -
fetched; however, it is possible with current technology. Imagine the following. As you grow more
attached to the Internet, you might choose to replace your computer at home with something like an
Internet Device, specially designed for use with the Internet. Let's call it an iDev. With this device, you
can be on the Internet immediately. If you want to do word processing, you can point your iDev to a
Microsoft Word service somewhere in Redmond and type away without the need to install word
processing software. When you are done, the document can be saved at an iStore server where you
can later retrieve it. Notice that for you to do this, the iStore server must host a software service to
allow you to store documents. Microsoft would charge you a service fee based on the amount of time
your word processor is running and which features you use (such as the grammar and spell checkers).
The iStore service charges vary based on the size of your document and how long it is stored. Of
course, all these charges won't come in the mail, but rather through an escrow service where the
money can be piped from and to your bank account or credit card.

This type of service aims to avoid the need to upgrade of your Microsoft Word application. If you get
tired of Microsoft Word, you can choose to use a different software service from another company. Of
course, the document that you store at the iStore server is already in a standard data format. Since
iStore utilizes the iMaxSecure software service from a company called iNNSA (Internet Not National
Security Agency), the security of your files is assured. And because you use the document storage

service at iStore, you also benefit from having your document authenticated and decrypted upon
viewing, as well as encrypted at storing time.

All of these things can be done today with Web Services.

In fact, Microsoft has launched a version of the "software as service" paradigm with its Passport
authentication service. Basically, it is a centralized authentication service that you can incorporate into
your web sites. For sites using the Passport authentication service, it's no longer necessary to
memorize or track numerous username/password pairs.

Recently, Microsoft also announced Project HailStorm, a set of user-centric Web Services, including
identification and authentication, email, instant messaging, automated alert, calendar, address book,
and storage. As you can see, most of these are well-known services that are provided separately
today. Identification and authenticationis the goal of the Passport project. Email might map to Hotmail

117

or any other web -based email services. Instant messaging and automated alert should be familiar to
you if you use MSN Messenger Service or AOL Instant Messenger. A calendar and address book are
usually bundled together with the web -based email service. Consolidating these user-centric services
and exposing them as Web Services would allow the user to publish and manage his own information.

A HailStorm customer can also control access permission to the data to allow or restrict access to
content. These services also allow other users, organizations, and smart devices to communicate and
retrieve information about us. For example, how many times have you been on the road with your
mobile phone and want to get to your contact list in Outlook? Your mobile phone should be able to
communicate with your address book Web Service to get someone's phone number, right? Or better
yet, if your car broke down in the middle of nowhere, you should be able to use your mobile phone to
locate the nearest mechanic. The user is in control of what information is published and to whom the
information will be displayed. You would probably have it set up so that only you can access your
address book, while the yellow pages Web Service that publishes the nearest mechanic shop to your
stranded location would be publicly accessible to all.

Currently, users store important data and personal information in many different places. With
HailStorm Web Services, information will be centrally managed. For example, your mechanic might
notify you when it's time for your next major service. Or when you move and change your address,
instead of looking up the list of contacts you wish to send the update to, HailStorm will help you
publish your update in one action.

The potential for consumer-oriented and business-to-business Web Services like HailStorm is great,
although there are serious and well-founded concerns about security and privacy. In one form or
another, though, Web Services are here to stay, so let's dive in and see what's underneath.

6.2 Web Services Framework

Web Services combine the best of both distributed componentization and the World Wide Web. It

extends distributed computing to broader ranges of client applications. The best thing is that it does it
by seamlessly marrying and enhancing existing technologies.

6.2.1 Web Services Architecture

Web Services are distributed software components that are accessible through standard web
protocols. The first part of that definition is similar to that of COM/DCOM components. However, it is
the second part that distinguishes Web Services from the crowd. Web Services enable software to
interoperate with a much broader range of clients. While COM-aware clients can understand only
COM components, Web Services can be consumed by any application that understands how to parse

an XML-formatted stream transmitted through HTTP channels. XML is the key technology used in
Web Services and is used in the following areas of the Microsoft .NET Web Services framework:

Web Service wire formats

The technology enabling universal understanding of how to perform data exchanges between
the service provider and consumer; the format of data for the request and response.

Web Service description in WSDL (Web Services Description Language)

The language describing how the service can be used. Think of this as the instructions on the

washing machine at the laundromat telling you where to put quarters, what buttons to push,
etc.

Web Service discovery

The process of advertising or publishing a piece of software as a service and allowing for the
discovery of this service.

118

.NET Framework Essentials

Figure 6-1 depicts the architecture of web applications using Windows DNA, while Figure 6-2
shows .NET-enabled web applications architecture. As you can see, communication between

components of a web application does not have to be within an intranet. Furthermore, intercomponent

communication can also use HTTP/XML.

Figure 6-1. Windows Distributed interNet Architecture
Inironet

Internet . Hmc@r{mm”
Web Applicetion &4 OREILLY
Presenlation B :
5 e e HITP
Business Layer
Dato Leryer

Figure6-2. NET-enabled web application framework

Internet

HITR/XML" b Appicaton

Presentofion Loyer

e HTTP /XML
-
HTTP/XML Business loyer HTTP /XML
Wb Seavice I TP/ XML

6.2.2 Web Services Wire Formats

You may have heard the phrase "DCOM is COM over the wire." Web Services are similar to DCOM
except that the wire is no longer a proprietary communication protocol. With Web Services, the wire

formats rely on more open Internet protocols such as HTTP or SMTP.

A web service is more or less a component running on the web server, exposed to the world through
standard Internet protocols. Microsoft .NET Web Services currently supports three protocols: HTTP

GET, HTTP POST, and SOAP (Simple Object Access Protocol), explained in the next sections.

Because these protocols are standar d protocols for the Web, it is very easy for the client applications

to use the services provided by the server.

6.2.2.1 HTTP GET and HTTP POST

As their names imply, both HTTP GET and HTTP POST use HTTP as their underlying protocol. The
GET and POST methods of the HTTP protocol have been widely used in ASP (Active Server Pages),
CGl, and other server-side architectures for many years now. Both of these methods encode request

parameters as hame/value pairs in the HTTP request. The GET method creates a query string and

119

appends it to the script's URL on the server that handles the request. For the POST method, the
name/value pairs are passed in the body of the HTTP request message.

6.2.2.2 SOAP

Similar to HTTP GET and HTTP POST, SOAP serves as a mechanism for p assing messages
between the clients and servers. In this context, the clients are web services consumers, and the
servers are the web services. The clients simply send an XML -formatted request message to the
server to get the service. The server responds by sending back yet another XML-formatted message.
The SOAP specification describes the format of these XML requests and responses. It is simple, yet
extensible, because it is based on XML.

SOAP is different than HTTP GET and HTTP POST because it uses XML to format its payload. The
messages being sent back and forth have a better structure and can convey more complex
information compared to simple name/value pairs in HTTP GET/POST protocols. Another difference is
that SOAP can be used on top of other transport protocols, such as SMTP in addition to HTTP.

6.2.3 Web Services Description (WSDL)

For web service clients to understand how to interact with a web service, there must be a description
of the method calls, or the interface that the web service supports. This web service description
document is found in an XML schema called WSDL (Web Services Description Language).
Remember that type libraries and IDL scripts are used to describe a COM component. Both IDL and
WSDL files describe an interface's method calls and the list of in and out parameters for the particular
call. The only major difference between the two description languages is that all descriptions in the
WSDL file are done in XML.

In theory, any WSDL-capable SOAP client can use the WSDL file to geta description of your web
service. It can then use the information contained in that file to understand the interface and invoke
your web service's methods.

6.2.3.1 WSDL Structure

The root of any web service description file is the<def i ni t i ons> element. Within this element, the
following elements provide both the abstract and concrete description of the service:

Types
A container for datatype definitions.

Message
An abstract, typed definition of the data being exchanged between the web service providers
and consumers. Each web method has two messages: input and output. The input describes
the parameters for the web method; the output describes the return data from the web method.
Each message contains zero or more<par t > parameters. Each parameter associates with a
concrete type defined in the<t ypes> container element.

Port Type
An abstract set of operations supported by one or more endpoints.

Operation

An abstract description of an action supported by the service. Each operation specifies the
input and output messages defined as <nessage> elements.

12C

.NET Framework Essentials
Binding

A concrete protocol and data-format specification for a particular port type. Similar to port type,
the binding contains operations, as well as the input and output for each operation. The main
difference is that with binding, we are now talking about actual transport type and how the
input and output are formatted.

Service

A collection of network endpoints—ports. Each of the web service wire formats defined earlier
constitutes a port of the service (HTTP GET, HTTP POST, and SOAP ports).

Port

A single endpoint defined by associating a binding and a network address. In other words, it
describes the protocol and data -format specification to be used as well as the network
address of where the web service clients can bind to for the service.

The following shows a typical WSDL file structure:

<definitions nane= t ar get Nanespace= xmns:...>

<types>...</types>

<nessage name="">...</nessage>

<portType nanme="">
<operation nane="">
<i nput nessage="" />
<out put nessage="" [>
</ operati on>

</ |.o.o.rtType>

<bi ndi ng name="">

<protocol :binding ...>
<operation nane="">
<protocol : operation ...>

<i nput>...</input>
<out put >. .. </ out put >
</ operation>

</ bi ndi ng>

<service name="">

<port name="" binding="">
<protocol :address | ocation="" />
</ port>

</ service>
</definitions>

The <t ypes> element contains physical type descriptions defined in XML Schema (XSD). These
types are being referred to from the <nessage> elements.

121

For each of the web methods in the web service, there are two messages defined for a particular port:
input and output. This means if a web service supports all three protocols: SOAP, HTTP GET, and
HTTP POST, there will be six <nessage> elements defined, one pair for each port. The naming
convention used by the Microsoft .NET autogenerated WSDL is:

Met hodNanme + Protocol + {In, Qut}

For example, a web method called GetBooks() will have the following messages:

<nessage name="Cet BooksSoapl n">... </ nessage>
<nessage nanme=" CGet BooksSoapQut">...</nessage>
<nessage nanme="Cet BooksHtt pGetln">...</nessage>
<nessage name="Cet BooksHttpGet Qut">...</ nessage>
<nessage nane="Get BooksHttpPostln">...</ message>
<nessage nane=" Get BooksHtt pPost Qut">... </ nessage>

For each protocol that the web service supports, there is one <por t Type> element defined. Within
each <port Type> element, all operations are specified as <oper at i on> elements. The naming
convention for the port type is:

WebSer vi ceNane + Protocol

To continue our example, here are the port types associated with the web service that we build later in
this chapter, PubsWS:

<port Type nane="PubsWsSoap" >
<operati on nanme="Get Books" >
<i nput nmessage="Get BooksSoapl n" />
<out put nessage="Get BooksSoapQut" />
</ operation>
</ port Type>

<port Type nanme="PubsWSHt t pGet " >
<oper ation nanme="Get Books" >
<i nput message="Cet BooksHttpCetln" />
<out put nessage="Get BooksHtt pCGetQut" />
</ operati on>
</ port Type>

<port Type nane="PubsWSHt t pPost " >
<oper ati on nanme="Get Books" >
<i nput nessage=" Get BooksHtt pPostIn" />
<out put message="Get BooksHtt pPostQut" />
</ operation>
</ port Type>

We have removed namespaces from the example to make it easier to read.

While the port types are abstract operations for each port, the bindings provide concrete information
on what protocol is being used, how the data is being transported, and where the service is located.
Again, there is a<bi ndi ng> element for each protocol supported by the web service:

<bi ndi ng nane="PubsWsSoap" type="s0: Pubs\WsSoap" >
<soap: bi ndi ng transport="http://schemas. xm soap. or g/ soap/ http"
styl e="docunent"” />
<oper ati on nanme="Get Books" >
<soap: operation soapAction="http://tenpuri.org/ Get Books"
styl e="docunent" />

122

.NET Framework Essentials

<i nput >
<soap: body use="literal" />
</input>
<out put >
<soap: body use="literal" />
</ out put >
</ operation>
</ bi ndi ng>

<bi ndi ng nanme="PubsWBHt t pGet" type="s0: PubsWsHt t pGet " >
<ht t p: bi ndi ng verb="CET" />
<oper ati on nane="Get Books" >
<http:operation |ocation="/Get Books" />
<i nput >
<htt p: url Encoded />
</input>
<out put >
<m me: m meXm part="Body" />
</ out put >
</ operation>
</ bi ndi ng>

<bi ndi ng nane="PubsWsHt t pPost" type="s0: PubsW5Ht t pPost " >
<ht t p: bi ndi ng ver b="POST" />
<operati on nanme="Get Books" >
<http:operation |ocation="/CGet Books" />
<i nput >
<m ne: content type="application/x-ww:-formurlencoded" />
</input>
<out put >
<mi me:m meXm part="Body" />
</ out put >
</ operation>
</ bi ndi ng>

For SOAP protocol, the binding is <soap: bi ndi ng>, and the transport is SOAP messages on top of
HTTP protocol. The <soap: oper at i on> element defines the HTTP header soapAct i on, which
points to the web method. Both input and output of the SOAP call are SOAP messages.

For both the HTTP GET and HTTP POST protocols, the binding is <ht t p: bi ndi ng> with the verb
being GET and POST, respectively. Because the GET and POST verbs are part of the HTTP protocoal,
there is no need for the extended HTTP header likesoapAct i on for SOAP protocol. The only thing
we need is the URL that points to the web method; in this case, the<soap: oper ati on> element
contains the attribute location which is setto/ Get Books.

The only real difference between the HTTP GET and POST protocols is the way the parameters are
passed to the web server. HTTP GET sends the parameters in the query string, while HTTP POST

sends the parameters in the form data. This difference is reflected in the <i nput > elements of the
operation GetBooks for the two HTTP protocols. For the HTTP GET protocol, the input is specified as
<http: url Encoded/ >, whereas for the HTTP POST protocol, the input is <mi ne: cont ent
type="application/ x-ww-fornturl encoded" />.

Looking back at the template of the WSDL document, we see that the only thing left to discuss is the
<servi ce> element, which defines the ports supported by this web service. For each of the

supported protocol, there is one <por t > element:

<servi ce nane="PubsWs">

<port nanme="PubsWsSoap" bi ndi ng="s0: Pubs\WsSoap" >

123

<soap: addr ess
| ocation="http://.../PubsWs.asnmx" />
</ port>

<port nanme="PubsWSHtt pGet" bi ndi ng="s0: PubsWsHt t pGet " >
<htt p: addr ess
| ocation="http://.../PubsW. asnx" />
</ port>

<port nanme="PubsWSHt t pPost" bi ndi ng="s0: PubsWsHt t pPost " >
<htt p: addr ess
| ocation="http://.../PubsW. asnx" />
</ port>

</ service>

Even though the three different ports look similar, theirbi ndi ng attributes associate the address of
the service with abi ndi ng element defined earlier. Web service clients now have enough information

on where to access the service, through which port to access the web service method, and how the
communication messages are defined.

Although it is possible to re ad the WSDL and manually construct the HTTPL! conversation with the

server to get to a particular web service, there are tools that autogenerate clientside proxy source
code to do the same thing. We show such a tool in "Web Services Consumers" later in this chapter.

™ current Microsoft .NET SOAP implementation runs on top of HTTP.

6.2.4 Web Services Discovery

Even though advertising of a web service is important, it is optional. Web services can be private as
well as public. Depending on the business model, some business-to-business (B2B) services would
not normally be advertised publicly. Instead, the web service owners would provide specific
instructions on accessing and using their service only to the business partner.

To advertise web services publicly, authors post discovery files on the Internet. Potential web services
clients can browse to these files for information about how to use the web services—the WSDL. Think
of it as the yellow pages for the web service. All it does is point you to where the actual web services
reside and to the description of those web services.

The process of looking up a service and checking out the service description is called Web Service
discovery. There are two ways of advertising the service: static and dynamic. In both of these, XML
conveys the locations of web services.

6.2.4.1 Static discovery

Static discovery is easier to understand because it is explicitin nature. If you want to advertise your
web service, you must explicitly create the .disco discovery file and point it to the WSDL.2 All .disco
files contain a root element di scovery as shown in the following code sample. Note thatdi scovery
is in the namespace htt p: / / schemas. xnl soap. or g/ di sco, which is referred to asdi sco in this
sample.

Bl you use Visual Studio.NET to create your web service, the discovery file is created automatically.

<?xm version="1.0" ?>
<di sco: di scovery xml ns: di sco="http://schemas. xnm soap. org/ di sco" >
</ di sco: di scovery>

124

.NET Framework Essentials

Inside the di scovery element, there can be one or more ofcont r act Ref or di scover yRef
elements. Both of these elements are described in the namespace

http://schemas. xm soap. org/ di sco/ scl. Thecontract Ref tag is used to reference an
actual web service URL that would return the WSDL or the description of the actual web service
contract. Thedi scover yRef tag, on the other hand, references another discovery document.

This XML document contains a link to one web service and a link to another discovery document:

<?xm version="1.0" ?>
<di sco: di scovery

xm ns: di sco="http://schenas. xm soap. or g/ di sco"

xm ns: scl ="http://schemas. xm soap. org/ di sco/ scl ">
<scl:contractRef ref="http://yourWbServer/yourWebServi ce. asmx?WsDL"/ >
<scl : di scover yRef
ref="http://yourBrotherSite/hi sWwebServiceDirectory.disco"/>
</ di sco: di scovery>

This sample disco file specifies two different namespaces: di sco, which is a nickname for the
namespace, specifiedathtt p: // schemas. xm soap. org/ di sco; andscl , which points to
http://schemas. xnl soap. or g/ di sco/ scl, where the schema for the service discovery and
service contract language is described. The cont r act Ref element specifies the URL where

your WebSer vi ce WSDL can be obtained. Right below that is the di scover yRef element, which
links to the discovery file on your Br ot her Si t e web site. This linkage allows for structuring networks
of related discovery documents.

6.2.4.2 Dynamic discovery

As opposed to explicitly specifying the URL for all web services your site supports, you can enable
dynamic discovery, which enables all web services underneath a specific URL on your web site to be
listed automatically. For your web site, you might want to group related web services under many
different directories and then provide a single dynamic discovery file in each of the directory. The root
tag of the dynamic discovery file is dynamicDiscovery instead of discovery.

<?xm version="1.0" ?>
<dynani cDi scovery xm ns="urn://schenmas- dynam c: di sco. 2000-03- 17" />

You can optionally specify exclude paths so that the dynamic mechanism does not have to look for

web services in all subdirectories underneath the location of the dynamic discovery file. Exclude paths
are in the following form:

<excl ude pat h="pat hnanme" />

If you run IIS as your web server, you'd probably have something like the following for a dynamic
discovery file:

<?xm version="1.0" ?>
<dynam cDi scovery xm ns="urn://schemas- dynam c: di sco. 2000-03- 17" >
<exclude path="_vti_cnf" />
<exclude path="_vti_pvt" />
<exclude path="_vti _log" />
<excl ude path="_vti_script" />
<exclude path="_vti_txt" />
</ dynam cDi scovery>

6.2.4.3 Discovery setting in practice

125

A combination of dynamic and static discovery makes a very flexible configuration. For example, you
can provide static discovery documents at each of the directories that contain web services. At the root
of the web server, provide a dynamic discovery document with links to all static discovery documents

in all subdirectories. To exclude web services from public viewing, provide the excl ude argument to
XML nodes to exclude their directories from the dynamic discovery document.

6.2.4.4 UDDI

Universal Description, Discovery, and Integration (UDDI) Business Registry is like a yellow pages of
web services. It allows businesses to publish their services and locate web services published by
partner organizations so that they can conduct trans actions quickly, easily, and dynamically with their
trading partner.

Through UDDI APIs, businesses can find services over the web that match their criteria (e.qg.,
cheapest fare), that offer the service they request (e.g., delivery on Sunday), and so on. Curently
backed by software giants such as Microsoft, IBM, and Ariba, UDDI is important to Web Services
because it enables access to businesses from a single place.

6.2.5 The System.Web.Services Namespace

Now that we have run through the basic framework of Microsoft .NET Web Services, let us take a look
inside what the .NET SDK provides us in the System.Web.Services namespace.

There are only a handful of classes in the System.Web.Services namespace:
WebService

The base class for all web services.
WebServiceAttribute

An attribute that can be associated with a Web Service -derived class.
WebMethodAttribute

An attribute that can be associated with public methods within a Web Service-derived class.
WebServicesConfiguration

Information needed for the Web Service runtime.
WebServicesConfigurationSectionHandler

Information needed for the Web Service runtime.

The two most important classes in the System.Web.Services namespace for creating web services are
the WebService base class and WebMethodAttribute. We make use of these classes in the next
section, where we implement a Web Service provider and several Web Service consumers.

WebService is the base class from which all web services inherit. It provides properties inherent to
legacy ASP programming such as Application, Server, Session, and a new property, Context, which
now includes Request and Response.

The WebMethodAttribute class allows you to apply attributes to each public method of your web
service. Using this class, you can assign specific values to the following attributes: description, session

126

.NET Framework Essentials

state enabling flag, message name, and transaction mode. See the following section for an example of
attribute setting in C# and VB.

The WebServiceAttribute class is used to provide more attributes about the web senice itself. You can
display a description of the web service, as well as the namespace to which this web service belongs.
In this book, we do not discuss helper classes dealing with the runtime of web services.

6.3 Web Services Provider

In this section, we describe how to develop a web service, first from the point of view of service
providers and then of the consumers.

Web Services providers implement web services and advertise them so that the clients can discover
and make use of the services. Because web services run on top of HTTP, there must be a web server
application of some sort on the machine that hosts the web services. This web server application can
be Microsoft Internet Information Services (11S), Apache, or any other program that can understand
and process the HTTP protocol. In our examples, we use Microsoft IS, since that is the only web
server currently supported by .NET.

6.3.1 Web Service Provider Example

We will be building a web service called PubsWS to let consumers get information from the sample

Pubsdatabase. All data access will be done through ADO.NET, so make sure you've read Chapter 5
before attempting the examples.

Creating a web service is a three-step process.

1. Create a newasmxfile for the web service. This must contain the <%webservice ... %
directive, as well as the class that provides the web service implementation. To the Web
Service clients, this asmxfile is the entry point to your Web Service. You need to put thisin a
virtual directory that has the executescripts permission turned on.

2. Inherit from the WebService class of the System.Web.Services nhamespace. This allows the
derived class to access all the normal ASP objects exposed in the WebService base class.
From this point, you can use these ASP objects as if you were developing an ASP-based
application 2 It is highly recommendedthat you specify a namespace for your web service
before publishing it publicly because the default namespace, http://tempuri.org/, will not
uniquely identify your web service from other web services. To do this, all you have to do is to
tag the web service class with the Nanespace attribute, specifying your own namespace.

1 you will have to get to the Request and Response objects through the Context property of the WebService class.

3. Tag the public methods with WebMethod attributes to make web methods—public methods of

a distributed component that are accessible via the Web. You don't have to tag a method as
WebMethod unless you want that method to be published as a web method.

The following C# code demonstrates a simple web service that exposes four methods to Internet
clients. We emphasize "Internet" because anyone that can access thisasmx file on the web server

can access these methods, as opposed to your COM component, which can be accessed only by
COMclients:

<%@ WebServi ce Language="C#" Cl ass="PubsWS. PubsWs" %
nanespace PubsWs
{

usi ng System
usi ng System Dat a;

127

usi ng System Dat a. O eDb;
usi ng System Web;
usi ng System \Web. Servi ces;

[WebSer vi ce(Nanespace="http://Oreilly/ Dot Net Essential s/")]
public class PubsWs : WebService
{
private static string msConnStr =
"provi der=sqgl ol edb; server=(l ocal) ; dat abase=pubs; ui d=sa; pwd=; ";

[WebMet hod(Descri pti on="Returns a DataSet containing all authors.")]
public DataSet GetAuthors()
{

O eDbDat aAdapt er oDBAdapt er;

Dat aSet o0DS;

oDBAdapt er = new O eDbDat aAdapter("sel ect * from aut hors",
m sConnStr);

oDS = new DataSet();

oDBAdapter. Fill (oDS, "Authors");

return oDS;

}

[WebMet hod]
public DataSet GetAuthor(string sSSN)
{

O eDbDat aAdapt er oDBAdapt er;

Dat aSet 0oDS;

oDBAdapt er = new O eDbDat aAdapt er (
"select * fromauthors where au_id =
+ sSSN + """, msConnStr);

oDS = new DataSet();

oDBAdapter. Fill (oDS, "SelectedAuthor");

return oDS;

}

[WebMet hod(MessageNanme=" Get BooksByAut hor ",
Descri ption="Fi nd books by author's SSN.")]
publ i c DataSet GetBooks(string sAuthor SSN)

{
O eDbDat aAdapt er oDBAdapt er;
Dat aSet 0oDS;
oDBAdapter = new O eDbDat aAdapt er (
"select * fromtitles inner join titleauthor on "
"titles.title_id=titleauthor.title_id " +
"where au_id="" + sAuthorSSN + """, msConnStr);
oDS = new DataSet();
oDBAdapter. Fill (oDS, "Books");
oDBAdapt er = new O eDbDat aAdapter("select * fromauthors " +
"where au_id="" + sAuthorSSN + """, msConnStr);
oDBAdapter.Fill (oDS, "Author");
return oDS;
}
[WebMet hod]

publ i c Dat aSet Get Books()

O eDbDat aAdapt er oDBAdapt er;

128

.NET Framework Essentials

Dat aSet oDS;

oDBAdapt er = new O eDbDat aAdapter("select * fromtitles" |,
m sConnStr);

oDS = new DataSet();

oDBAdapt er. Fill (oDS, "Books");

return oDS;

}

} /1 end PubsWs
}

If you are familiar with ASP, you may recognize the usage of the @ symbol in front of keyword
WebSer vi ce. This WebService directive specifies the language of the web service so that ASP.NET

can compile the web service with the correct compiler. This directive also specifies the class that

implements the web service so it can load the correct class and employ reflection to generate the
WSDL for the web service.

Because PubsWS also uses ADO.NET's OLE DB provider for its data -access needs, we have to add
a reference to System.Data and System.Data.OleDb, in addition to the System, Sysem.Web, and
System.Web.Services namespaces.

Class PubsWS inherits from WebService with the colon syntax that should be familiar to C++ or C#
developers:

public class PubsWs : WebService
The four methods that are tagged with WebMethod attributes are GetAuthors(), GetAuthor(),
GetBooks(string), and GetBooks(). In C#, you can tag public methods with a WebMethod attribute

using the [| syntax. In VB, you must use < >. For example, in VB, the second method would be
declared as:

Publi c Function <WebMethod()> GetAuthor(sSSN As String) As DataSet

By adding [V\ebVet hod] in front of your public method, you make the public method callable from
any Internet client. What goes on behind the scenes is that your public method is associated with an
attribute, which is implemented as a WebMethodAttribute class. WebMethodAttribute has six
properties:

BufferResponse (boolean)
Controls whether or not to buffer the method's response.
CacheDuration

Specifies the length of time, in seconds, to keep the method response in cache. The default is
not to hold the method response in cache (0 seconds).

Description
Provides additional information about a particular web method.
EnableSession (boolean)

Enables or disables session state. If you don't intend to use session state for theweb method,
you might want to disable this flag so that the web server does not have to generate and

129

manage session IDs for each user accessing this web method. This might improve
performance. This flag ist r ue by default.

MessageName

Distinguishes web methods with the same names. For example, if you have two different
methods called GetBooks (one method retrieves all books while the other method retrieves
only books written by a certain author) and you want to publish both of these methods as web
methods, the system will have a problem trying to distinguish the two methods since their
names are duplicated. You have to use the MessageName property to make sure all service
signatures within the WSDL are unique. If the protocol is SOAP, MessageName is mapped to
the SOAPAct | on request header and nested within the soap: Body element. For HTTP GET

and HTTP POST, it is the PathInfo portion of the URI (as in
http://localhost//PubsWS/PubsWS.asmx/GetBooksByAuthor).

TransactionOption

Can be one of five modes: Disabled , NotSupported, Supported, Required, and RequiresNew.
Even though there are five modes, web methods can only participate as the root object in a
transaction. This means both Required and RequiresNew result in a new transaction being
created for the web method. The Disabled, NotSupported, and Supported settings result in no
transaction being used for the web method. The TransactionOption property of a web method
is set to Disabled by default.

To set up these properties, pass the property name and its value as a nane =val ue pair:

[WebMet hod(Descri pti on="Returns a DataSet containing all authors.")]
public DataSet GetAuthors()

You can separate multiple properties with a comma:

[WebMet hod(MessageName=" Get BooksByAut hor ",
Description="Find books by author's SSN.")]
publ i c Dat aSet GCetBooks(string sAuthor SSN)

6.3.1.1 Web.Config

If you set up your web services from scratch, you might also need to provide the configuration file
(web.config) in the same directory as your asmx file. This configuration file allows you to control
various application settings about the virtual directory. The only thing we recommend definitively is to
set the authentication mode toNone to make our web services development and testing a little easier.
When you release your web services to the public, you would probably change this setting to

W ndows, For s, or Passport instead of None:

<confi guration>
<system web>
<aut henti cati on node="None" />
</ system web>
</ configuration>

The following list shows the different modesof authentication:
Forms
Basic Forms authentication is where unauthenticated requests are redirected to a login form.

Windows

13C

.NET Framework Essentials

Authentication is performed by IIS in one of three ways: basic, digest, or Integrated Windows
Authentication.

Passport

Unauthenticated requests to the resource are redirected to Microsoft's centralized
authentication service. When authenticated, a token is passed back and used by subsequent
requests.

6.4 Web Services Consumers

Now that you have successfully created a web service, let's take a look at how this web service is
used by web clients.

Web Services clients communicate with web services through standard web protocols. They send and
receive XML-encoded messages to and from the web services. This means any application on any
platform can access the web services as long as it uses standard web protocols and understands the
XML-encoded messages. As mentioned earlier, there are three protocols that the web clients can
employ to communicate with the servers (web services): HTTP GET, HTTP POST, and SOAP. We
demonstrate next how to build client applications that utilize each of these protocols. These web
services-client applications are done in both VB6 and .NET languages, such as C# and VB.NET, to
demonstrate the cross-language/cros s-platform benefits of Web Services. For example, you can
replace the example in VB6 with Perl running on Unix, and the web services should still be serving.

6.4.1 HTTP GET Consumer

Let's look at how it is done using HTTP GET first, since it is the simplest. In the examples that follow,
we use localhostas the name of the web server running the service and PubsWS as the virtual
directory. If you have deployed the sample web service on a remote server, you'll need to substitute
the name of the server and virtual directory as appropriate.

If you point your web browser at the web service URL (http://localhost/PubsWS/PubsWS.asmx), it will
give you a list of supported methods. To find out more about these methods, click one of them. This
brings up a default web service consumer. This consumer, autogenerated through the use of reflection,
is great for testing your web services' methods ™ It uses the HTTP GET protocol to communicate with

the web service. This consumer features a form that lets you test the method (see Figure 6 -3), as
well as descriptions of how to access the method via SOAP, HTTP GET, or HTTP POST.

[41 A simply Reflection example can be found in Section 4.3.1 .

Figure 6-3. An autogenerated web services consumer

131

W rubvws Weh Serace - Hcrosnft Inbemet Explorer
Ble B Wew Fgeodtes Jook Hep
| bk e oo D] 0| Qseweh [afPeventss o fesey | Ly bW 2] 23 R

:

-'dhu|g‘| hittpeflocaltost Pubsws Pube'ws, asmops=Getiukhon ﬂ oo | |Links ™

Click Fiere for & complete Bt of operstions .

GetAuthor

Test

To tesl, ick the Treeake” hublon

Parameter Value

SSEN: |1 T2-12-11Th

4 o

&] Dons ' Local intranet F

Here is the description of the GET request and response supplied by the default consumer:

The following is a sanple HTTP GET request and response. The placehol ders
shown need to be replaced with actual val ues.

GET / PubsWS/ PubsWs. asnx/ Get Aut hor ?sSSN=string HTTP/ 1.1
Host: | ocal host

HTTP/ 1.1 200 OK
Content- Type: text/xm; charset=utf-8
Content-Length: length

<?xm version="1.0" encodi ng="utf-8"?>
<Dat aSet xm ns="http://tenpuri.org/">

<schema xm ns="http://ww. w3. org/ 2001/ XM_Schem" >schena</ schema>xml
</ Dat aSet >

Using HTTP GET protocol, the complete URL to invoke the web method, along with parameters, can
be the following:

http://1 ocal host/ PubsWs/ PubsW5. asnx/ Get Aut hor ?sSSN=172-32- 1176

Here is the response, including HTTP response headers and the raw XML (note how the response
includes the serialized schema and data from the DataSet object):

Cache- Control: private, nax-age=0

Date: Tue, 08 May 2001 20:53:16 GMI
Server: Mcrosoft-11S/5.0

Cont ent- Lengt h: 2450

Content- Type: text/xm; charset=utf-8
Client-Date: Tue, 08 May 2001 20:53:16 GVl
Client-Peer: 127.0.0.1:80

<?xm version="1.0" encodi ng="utf-8"?>
<Dat aSet xm ns="http://tenpuri.org/">
<xsd: schema i d="NewDat aSet "
t ar get Nanespace= xm ns=
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Scherma"
xm ns: nsdat a="urn: schenmas- m crosoft- com xm - nsdat a" >
<xsd: el enent nane="NewDat aSet" nsdat a: | sDat aSet ="true">
<xsd: conpl exType>
<xsd: choi ce maxCccur s="unbounded" >

nn nn

132

.NET Framework Essentials

<xsd: el enent nane="Sel ect edAut hor" >

<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement

<xsd: el enent

<xsd: el enent

<xsd: el enent

<xsd: el enent

<xsd: el ement

<xsd: el enent

<xsd: el ement

<xsd: el ement

</ xsd: sequence>

name="au_i d"

nsdat a: Def aul t Val ue="NULL" type="xsd:

m nCccurs="0" nsdat a: Ordi nal =" 0"
nanme="au_l nane"

msdat a: Def aul t Val ue="NULL" type="xsd

m nCccurs="0" nsdata: Ordi nal =" 1"
nanme="au_f name"

msdat a: Def aul t Val ue="NULL" type="xsd

m nCccurs="0" nedat a: Ordi nal =" 2"
nane="phone"

nsdat a: Def aul t Val ue="NULL" type="xsd

m nCccurs="0" nsdat a: Ordi nal =" 3"
nanme="addr ess"

nsdat a: Def aul t Val ue="NULL" type="xsd

m nCccurs="0" nedat a: Ordi nal =" 4"
name="city"

nsdat a: Def aul t Val ue="NULL" type="xsd

m nCccurs="0" nedat a: Ordi nal =" 5"
nane="st at e"

msdat a: Def aul t Val ue="NULL" type="xsd

m nQOccur s="0" nsdat a: Or di nal =" 6"
nanme="zi p"

msdat a: Def aul t Val ue="NULL" type="xsd

m nCccurs="0" nsdata: Ordi nal =" 7"
nanme="contract"

nsdat a: Def aul t Val ue="NULL" type="xsd

m nCccur s="0" nsdat a: Ordi nal =" 8"

</ xsd: conpl exType>

</ xsd: el enent >
</ xsd: choi ce>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: schema>

<NewDat aSet xml ns: nsdat a="urn: schemas-m crosoft-com xnl -nsdat a"

/>

/>

/>

/>

/>

/>

/>

/>

/>

string"

string"

string”

string”

string"

string”

string”

string"

bool ean”

xm ns: updg="urn: schenas-ni crosoft-com xml -updat egr ant' >

<updg: sync>
<nsdat a: unchanged>

<Sel ect edAut hor updg: i d="f5237587-4918- 44c6-b5ch- 51a84e6af 4e3"

xm ns

—nn s

<au_i d>172- 32-1176</ au_i d>
<au_l name>Whi t e</ au_l nanme>

<au_f name>Johnson</

au_f nane>

<phone>408 496- 7223</ phone>
<addr ess>10932 Bi gge Rd. </ address>

<city>Menl o Park</c
<st at e>CA</ st at e>
<zi p>94025</ zi p>

ity>

<contract>true</contract>

</ Sel ect edAut hor >
</ msdat a: unchanged>
</ updg: sync>
</ NewDat aSet >
</ Dat aSet >

133

6.4.2HTTP POST Consumer

In the section Section 6.4.1, we saw the automatic creation of a web services consumer just by
hitting the URL of the web services, http://localhost/PubsWS/PubsWS.asmx. It is now time for us to
see how a web client can use HTTP POST and SOAP to access a web service. This time around, we
are going write a C# web service consumer.

The Microsoft .NET SDK comes with a rich set of tools to simplify the process of creating or
consuming web services. We are going to use one of these tools, wsdl , to generate source code for
the proxies to the actual web services:E

Bl wsdl.exegenerates the proxy source code similar to the way IDL compilers generate source files for DCOM proxies. The only
difference is that WSDL is the language that describes the interface of the software component, which is XML -based.

wsdl /1:CS /protocol: HttpPost http://1ocal host/ PubsWs/ PubsW5. asnx?WsDL

This command line creates a proxy for the PubsWS web service from the WSDL (Web Services
Description Language) document obtained from the URL
http://localhost/PubsWS/PubsWS.asmx?WSDL The proxy uses HTTP POST as its protocol to talk to
the web service and is generated as a C# source file.

The wsdl tool can also take a WSDL file as its input instead of a URL pointing to the location where
the WSDL can be obtained.

This C# proxy source file represents the proxy class for the PubsWS web service that the clients can
compile against. If you look at this generated C# file, you will see that it contains a proxy class
PubsWS that derives from HttpPostClientProtocol class. If you use the/ pr ot ocol : Hi t pGet or

/ prot ocol : SOAP parameters, then the PubsWS derives from either the HttpGetClientProtocol or
SoapHttpClientProtocol class.

After generating the C# source file PubsWS.cs, we are faced with two choices for how this proxy can
be used. One way is to include this source file in the client application project using Visual Studio.NET.
The project has to be a C# project if you choose this route. To make use of the proxy, you also have to
add to your project any references that the proxy depends on. In this example, the necessary

references for the proxy file are System.Web.Services, System.Web.Services.Protocols,
System.Xml.Serialization, and System.Data.

The other way to use the proxy is more flexible. You can compile the C# source file into a dynamic link
library (DLL) and then add a reference to this DLL to any project you want to create. This way you can
even have a VB project use the DLL.

Below is the command line used to compile the C# proxy source into a DLL. Notice that the three
references are linked to PubsWS.cs so that the resulting PubsWS.DLL is selfcontained (type the
entire command on one line):

csc /t:library
[r:system web. services. dl |
[r:system xni.dll
/r:system data.dll
PubsWs. cs

Regardless of how you choose to use the proxy, the client application code will still look the same.
Consider the next two code examples containing C# and VB code. For both languages, the first lines
create an instance of the proxy to the web service, PubsWS. The second lines invoke the GetBooks
web method to get a DataSet as the result. The remaining lines bind the default view of the table
Books to the data grid, add the data grid to a form, and display the form. Note that these examples
use the Windows Forms API, which we'll discuss inChapter 8.

134

NET Framework Essentials
Here is the C# web service client, TestProxy.cs :
usi ng System
usi ng System Drawi ng;

usi ng System W ndows. For ns;
usi ng System Dat a;

public class TestProxy

{

public static void Main()

{
[* Create a proxy. */
PubsWSs oProxy = new PubsWs();
/* Invoke GetBooks() over SOAP and get the data set. */
Dat aSet oDS = oProxy. Get Books();
/* Create a data grid and connect it to the data set. */
DataGid dg = new DataGrid();
dg. Si ze = new Si ze(490, 270);
dg. Dat aSource = oDS. Tabl es["Books"] . Def aul t Vi ew,
/* Set the properties of the formand add the data grid. */
Form nyForm = new Form();
myForm Text = "DataGrid Sanple";
myForm Si ze = new Si ze(500, 300);
myForm Cont rol s. Add(dg) ;
[* Display the form */
Syst em W ndows. For ns. Appl i cati on. Run(myForm ;

}

}

If you created the DLL as previously directed, you can compile this with the following command:

csc TestProxy.cs /r:PubsWs. dl |

This creates the executable TestProxy.exe, which gets a DataSet using a SOAP call, and displays a

data grid confiining that dataset. Figure 6 -4 shows the output of the C# client after obtaining the data
from the PubsWS web service via SOAP protocol.

Figure 6-4. C# web service c lient after calling GetBooks()

135

=10] x|
e S R R SR R e R |
itk _id tille: b pub_id pce advance = |
] ELN0GE2 The By Exe business 1383 1959 AO0D0
BUTIM Cooking valh business 1383 1.9 5000
BLLZ07S WouCanCo business 073 293 1m2s
EUTEI2 Stizight Tak busiess 1383 13,59 5000
MC2222 Silicon Valey mod_coak oery 15.59 1}
MC3021 The Goumet mod_cook 0gry 293 15000
MCHI2E The Peychole UNDECIDED 0B77 frudl] fruall
PC1035 Butlz It Uger popular_com 1383 2295 7000 [
PCEas Secrets of Sl popular_com 1383 il BO00
PCI355 Met Eligustle populs_com 1383 [rodl] [rual)
P51372 Compuler Ph peychology D877 2159 7000
P52091 lséngerthe peychology 0738 10,55 2275 -
‘ | Laloma s Rt n Il Hab b a P scsloals s I'IIT'V" - [ale au) Lr‘

Here is an excerpt from the VB web service client, TestProxy.vb :

Di m oProxy as PubsWs = New PubsWs()
Di m oDS as DataSet = oProxy. Get Books()
Dat aGri d1. Dat aSour ce = oDS. Tabl es(" Books") . Def aul t Vi ew

You can compile the VB web service client with this command (type the entire command on one line):

vbc Test Proxy. vb
/r:System Drawi ng. dl |
/r:System W ndows. Forns. dl |
/r:System Dat a. dl |
[r: PubsWs. dl |
[r:System Web. Servi ces. dl |
/r:Systemdl |
/r:System xnm . dl|

6.4.3 Non-.NET Consumers

This section shows how to develop non-.NET web service consumers using HTTP GET, HTTP POST,
and SOAP protocols. Because we cannot just create the proxy class from the WSDL and compile it
with the client code directly, we must look at the WSDL file to understand how to construct and
interpret messages between the web service and the clients. We trimmed down the WSDL file for our
PubsWS web service to show only types, messages, ports, operations, and bindings that we actually
use in the next several web service-client examples. In particular, we will have our VB6 client access
the following:

Web method Protocol
GetBooks() HTTP GET protocol
GetAuthor(ssn) HTTP POST protocol
GetBooksByAuthor(ssn) SOAP protocol

As a reference, here is the simplified version of the WSDL file while you experiment with the VB6 client
application:

<?xm version="1.0" encodi ng="utf-8"?>
<definitions xmns:...

xm ns: sO="http://Oreilly/ Dot Net Essenti al s/ "
target Nanespace="http:// Oreilly/ Dot Net Essential s/" >

<types>

136

.NET Framework Essentials

<!-- This datatype is used by the HTTP POST call -->
<s: el enent nane="Get Aut hor" >
<s: conpl exType>
<s:sequence>
<s:elenment minCccurs="1" maxCccurs="1"
nanme="sSSN' nill abl e="true" type="s:string" />
</ s: sequence>
</ s:conpl exType>
</s:el ement >
<l-- This datatype is used by the HTTP POST call -->
<s: el enent nane="Get Aut hor Response" >
<s: conpl exType>
<s:sequence>
<s:elenment minCccurs="1" maxCccurs="1"
name=" CGet Aut hor Result" nill abl e="true">
<s:conpl exType>
<s:sequence>
<s:elenent ref="s:schem" />
<s:any />
</ s: sequence>
</ s:conpl exType>
</s:el ement >
</ s: sequence>
</ s:conpl exType>
</s:el ement >

<!-- This datatype is used by the SOAP call -->
<s: el emrent name="Get BooksByAut hor" >
<s: conpl exType>
<s:sequence>
<s:element minCccurs="1" maxCccurs="1"
name="sAut hor SSN' ni |l | abl e="true" type="s:string" />
</ s: sequence>
</ s:conpl exType>
</s:el ement >
<!-- This datatype is used by the SOAP call -->
<s: el ement nanme=" Get BooksByAut hor Response" >
<s:conpl exType>
<s:sequence>
<s:element m nOccurs="1" maxCccurs="1"
name=" Get BooksByAut hor Resul t” nill abl e="true">
<s:conpl exType>
<s:sequence>
<s:elenent ref="s:schem" />
<s:any />
</ s: sequence>
</ s:conpl exType>
</s:el ement >
</ s:sequence>
</ s:conpl exType>
</s: el ement >

<!-- This datatype is used by the HTTP GET call -->
<s: el emrent name="Get Books" >

<s:conpl exType />
</s:el enent >
<!-- This datatype is used by the HTTP GET call -->
<s: el ement name="Get BooksResponse" >

<s: conpl exType>

<s:sequence>
<s:element minCccurs="1" maxCccurs="1"

137

name=" Get BooksResult" nill abl e="true">
<s:conpl exType>
<s:sequence>
<s:elenment ref="s:schem" />
<s:any />
</ s: sequence>
</ s: conpl exType>
</s: el enent>
</ s: sequence>
</ s:conpl exType>
</s:el emrent >

<l-- This datatype is used by the HTTP GET/ POST responses -->
<s:el ement nanme="DataSet" nillabl e="true">
<s:conpl exType>
<s:sequence>
<s:element ref="s:schem" />
<s:any />
</ s:sequence>
</s: conpl exType>
</s: el emrent >

</types>

<l -- These nessages are used by the SOAP call -->
<nessage nane="CGet BooksByAut hor Soapl n">
<part nanme="paraneters" el enment="s0: Get BooksByAut hor" />
</ message>
<nmessage nanme="Cet BooksByAut hor SoapQut " >
<part name="paranmeters" el ement="s0: Get BooksByAut hor Response" />
</ message>

<l -- These nessages are used by the HTTP GET call -->
<nessage nane="Get BooksHttpGetln" />
<nmessage nanme="Cet BooksHtt pGet Cut " >
<part nane="Body" el enment="s0: DataSet" />
</ message>

<l -- These nessages are used by the HTTP POST call -->
<nessage nane="Get Aut hor Htt pPost | n">
<part name="sSSN' type="s:string" />
</ message>
<nessage nane="Get Aut hor Ht t pPost Qut " >
<part nane="Body" el enent="s0: DataSet" />
</ message>

<l -- SOAP port -->
<port Type nane="PubsWsSoap" >
<operation nanme="Get Books" >
<docunent ati on>Fi nd books by author's SSN. </ docunent ati on>
<i nput nane=" CGet BooksByAut hor"
nmessage="s0: Get BooksByAut hor Soapl n" />
<out put nanme=" Get BooksByAut hor"
nmessage="s0: Get BooksByAut hor SoapQut" />
</ operati on>
</ port Type>

<l -- HTTP GET port -->
<port Type name="PubsWSHt t pGet " >
<operati on name="Cet Books" >
<i nput nessage="s0: Get BooksHtt pGetIn" />

138

.NET Framework Essentials

<out put nessage="s0: Get BooksHtt pGet Qut" />
</ operation>
</ port Type>

<!-- HTTP POST port -->
<port Type name="PubsWsHt t pPost " >
<operati on nanme="Get Aut hor ">
<i nput nessage="s0: Get Aut hor Ht t pPost I n" />
<out put nmessage="s0: Get Aut hor Ht t pPost Qut " />
</ operation>
</ port Type>

<!-- SOAP binding -->
<bi ndi ng name="PubsWSSoap" type="s0: PubsWsSoap" >
<soap: bi ndi ng
transport="http://schemas. xnm soap. or g/ soap/ htt p"
styl e="document" />
<operati on nanme="Get Books" >
<soap: operation
soapAction="http:// Oeilly/ Dot Net Essenti al s/ Get BooksByAut hor"
styl e="docunment" />
<i nput nane=" Get BooksByAut hor " >
<soap: body use="literal" />
</i nput >
<out put nanme=" Get BooksByAut hor" >
<soap: body use="literal" />
</ out put >
</ operation>
</ bi ndi ng>

<!-- HTTP GET binding -->
<bi ndi ng nanme="PubsWsHt t pGet " type="s0: PubsWSHt t pGet " >
<htt p: bi ndi ng verb="CGET" />
<oper ation nanme="Get Books" >
<htt p: operation | ocati on="/Cet Books" />
<i nput >
<http: url Encoded />
</input >
<out put >
<m me: m meXm part="Body" />
</ out put >
</ oper ati on>
</ bi ndi ng>

<l-- HITP POST binding -->
<bi ndi ng nane="PubsWSHt t pPost" type="s0: PubsWBHt t pPost " >
<htt p: bi ndi ng ver b="POST" />
<operati on nanme="Get Aut hor ">
<http:operation |location="/GetAut hor" />
<i nput >
<m nme: content type="application/x-ww-formurlencoded" />
</input >
<out put >
<m nme: m meXm part="Body" />
</ out put >
</ operati on>
</ bi ndi ng>

<l-- The whole Wb Service and address bindings -->
<servi ce nane="PubsWs">

139

<port nane="PubsWsSoap" bi ndi ng="s0: PubsWSSoap" >
<soap: address | ocation="http://1ocal host/PubsWs/ PubsWs. asnx" />
</ port>

<port name="PubsWSHt t pCet" bi ndi ng="s0: PubsWSHt t pGet " >
<http:address | ocation="http://|ocal host/PubsWs/ PubsWs. asnx" />
</ port>

<port nanme="PubsWSHtt pPost" bi ndi ng="s0: Pubs\WsHt t pPost " >
<htt p: address | ocation="http://| ocal host/PubsWs/ PubsWs. asnx" />
</ port>

</ service>

</definitions>

In both the HTTP GET and HTTP POST protocols, you pass parameters to the web services as
name/value pairs. With the HTTP GET protocol, you must pass parameters in the query string,
whereas the HTTP POST protocol packs the parameters in the body of the request package. To
demonstrate this point, we will construct a simple VB client using both HTTP GET and HTTP POST
protocols to communicate with the PubsWS web service.

Let's first create a VB6 standard application. We need to add a reference to Microsoft XML, v3.0
(msxmi3.dll'), because we'll use the XMLHTTP object to help us communicate with the web services.
For demonstrative purposes, we will also use the Microsoft Internet Controls component (shdocvw.dll)
to display XML and HTML content.

First, add two buttons on the default form, f or mL, and give them the captions GET and POST, as well
as the names cnidCGet andcndPost, respectively. After that, drag the WebBrowser object from the
toolbar onto the form, and name the controlny\\ebBr owser . If you make the WebBrowser navigate to

about : bl ank initially, you will end up with something like Eigure 6 5.

Figure6-5. VB client form to test Web Services

-l x
[CE= P |
=

Now all we need is some code similar to the following to handle the two buttons' click events:

Private Sub crmdGet _Click()
Di m oXMLHTTP As XM_HTTP
Di m oDOM As DOVDocumnment
Di m oXSL As DOVDocunent

Call the web service to get an XM. docunent
Set oXMLHTTP = New XMLHTTP
OXMLHTTP. open " GET", _
"http://1ocal host/ PubsWs/ PubsWS. asnx/ Get Books",
Fal se
OXMLHTTP. send
Set oDOM = oXM.HTTP. responseXM

Create the XSL docunment to be used for transformation

14C

.NET Framework Essentials

Set oXSL = New DOVDocumnent
OXSL. Load App.Path & "\tenplateTitle.xsl"

" Transformthe XML docunment into an HTM. docunent and displ ay
myWebBr owser . Docunent . Wite CStr(oDOM transfornNode(oXSL))
myWebBr owser . Docunent . Cl ose

Set 0oXSL = Not hi ng

Set oDOM = Not hi ng

Set oXMLHTTP = Not hi ng
End Sub

Private Sub cndPost Click()
Di m oXMLHTTP As XMLHTTP
Di m oDOM As DOVDocunent
Di m oXSL As DOVDocunent

" Call the web service to get an XM. docunent
Set oXMLHTTP = New XMLHTTP
OXMLHTTP. open " POST", _
"http://1ocal host/ PubsWs/ PubsWs. asnx/ Get Aut hor ",
Fal se
OXMLHTTP. set Request Header " Content- Type", _
"appl i cati on/ x- ww« f or mur | encoded”
OXMLHTTP. send " sSSN=172-32-1176"
Set oDOM = oXM.HTTP. r esponseXM
" Create the XSL document to be used for transformation
Set oXSL = New DOVDocument
OXSL. Load App. Path & "\tenpl at eAut hor. xsl "
" Transformthe XM. docunent into an HTM. docunent and di spl ay
myWebBr owser . Docunment . Wite oDOM transfor mNode(0XSL)
myWebBr owser . Docunent . Cl ose

Set oXSL = Not hi ng

Set oDOM = Not hi ng

Set oXMLHTTP = Not hi ng
End Sub

The two subroutines are similar in structure, except that the first one uses the HTTP GET protocol and

the second one uses the HTTP POST protocol to get to the PubsWS web service. Let's take a closer
look at what the two subroutines do.

For the HTTP GET protocol, we use the XMLHTTP object to point to the URL for the web method, as
specified in the WSDL. Since the GetBooks web method does not require any parameters, the query
string in this case is empty. The method is invoked synchronously because the async parameter to
XMLHTTP's open method is set tof al se. After the method invocation is done, we transform the XML
result using templateTitle.xsl and display the HTML on the ny\\ebBr owser instance on the form.

Figure 6-6 displays the screen of our web services testing application after invoking the GetBooks
web method at URL http://localhost/PubsWS/PubsWS.asmx/ through HTTP GET protocol.

Figure 6-6. VB client form after calling GetBooks

141

il

P
List of boks Ti
Title Type FPrice Notes
The Busy Execiutive's business 19,55 FAn overview of available database syaterns sith enphacs

Databass Gude on commen business apphbcations, [Dustrated

Cocking with Compaters P— 11.95 Helpfil hintz on how to uge wour electromc reacurces to
Surrepitious Balanee Sheels 77 e best advardage.

The latest medical and psychological techniques for lvmg

Tou Can Combat Computer busgineas 200 with the eleckrendc office. Easy-to-understand |

Stressl

explanabons
Sragght Talk Abcat businass 19.95 Annotated analysis of what computers cen de for you a
Coargiaters T o~ hype gede For the cnteal user.
?;":;:‘ Valley Grstronamse mod_ceok 1995 Faverite recipes For guick, easy, and elegant meals

The Gowmet Microwave mod_cook 2.9 Tracditional French gourmel recipes adapted foe modesn
B : ncrowave cooking

Thir Peyebalagy of

Compurer Cockmg

Butls I User Friendly? popular comp 22,95+ 7Y of sebiware for the nawe veer, focwang onthe | |

TNDECIDED

For the HTTP POST protocol, we also point the XMLHTTP object to the URL for the web method—in
this case, method GetAuthor. Because this is a POST request, we have to specify in the HTTP header
that the request is coming over as a form by setting the Cont ent - Ty pe header variable to

application/ x-wwe form url encoded. If this variable is not set, XMLHTTP by default passes
the data to the server in XML format.

Another difference worth noticing is that the GetAuthor method requires a single parameter, which is
the SSN of the author asa string. Since this is a post request, we are going to send the name/value
pair directly to the server in the body of the message. Because the Cont ent - Type header has been
settoappl i cation/ x-wwe formurl encoded, the server will know how to get to the parameters
and perform the work requested. This time, we use templateAuthor.xsl to transform the XML result to

HTML and display it. Figure 6-7 shows our application ater invoking the GetAuthor web method of
PubsWS web service through HTTP POST protocol.

Figure 6-7. VB client form after calling GetAuthor

i
Get [-
|
Selected author
IO 172-32-1176

MName [chnson Whate

Address 10532 Bipge o
Menle Park, CA 94025

Phame 405 4967223

=

The following code is the XSL used to transform the XML result from the GetBooks web method call to
HTML to be displayed on the web browser instance on the VB form:

<htm version="1.0" xm ns:xsl="http://ww. w3. org/ TR W\D- xs| ">
<head><title>A list of books</title></head>
<styl e>
. hdr { background- col or =#f f eedd; font-wei ght=bold; }
</styl e>
<body>
Li st of books
<t abl e styl e="border-col |l apse: col | apse" border="1">
<tr>

<td class="hdr">Title</td>

<td class="hdr">Type</td>

<td class="hdr">Price</td>

142

.NET Framework Essentials

<td class="hdr">Not es</td>

</[tr>

<xsl :for-each sel ect="//Books">

<tr>
<t d><xsl :val ue- of select="title"/></td>
<t d><xsl : val ue- of select="type"/></td>
<t d><xsl : val ue- of sel ect="price"/></td>
<t d><xsl : val ue- of sel ect="notes"/></td>

</tr>

</ xsl : for-each>

</table>

</ body>

</htm >

Here is the XSL used to transform the XML result from the GetAuthor web method call to HTML to be
displayed on the web browser instance on the VB form:

<htm version="1.0" xm ns:xsl="http://ww.w3. org/ TR/ WD xsl| ">
<head><titl| e>Sel ected author</titl e></head>
<STYLE>
.hdr { background-col or:"' #f f eedd'
text-align:'right'; vertical -align:'top'
font -wei ght =bol d; }
</ STYLE>
<body>
Sel ect ed aut hor </ B>
<xsl:for-each sel ect="//Sel ect edAut hor">
<tabl e styl e="border-coll apse:'collapse'" border="1">
<tr><td class="hdr">I D</td>
<td><xsl :val ue-of select="au_id"/></td></tr>
<tr><td class="hdr">Nanme</td>
<t d><xsl : val ue- of sel ect="au_fnanme"/>
<xsl :val ue- of select="au_| name"/></td></tr>
<tr><td class="hdr">Address</td>
<t d><xsl : val ue- of sel ect ="address"/>

<xsl :val ue- of select="city"/>,
<xsl : val ue- of select="state"/>
<xsl :val ue- of select="zip"/>/br></td></tr>
<tr><td cl ass="hdr">Phone</td>
<t d><xsl : val ue- of sel ect="phone"/></td></tr>
</tabl e>
</ xsl:for-each>
</ body>
</htm >

We can also use SOAP protocol to access the web service. Because the web service is exposed
through HTTP and XML, any clients on any platform can access the service as long as they conform
to the specification of the service. Again, this specification is the WSDL file. By inspecting the WSDL
file—specifically, the SOAP section—we can use XMLHTTP again to communicate in SOAP dialog
Let's see how this can be done.

Let's go back to the example of consumer web services using VB6 and XMLHTTP. Add another button
on the form, and call it cnd SOAP with caption SOAP. This time, we will ask the web service to return all
books written by a particular author:

Private Sub cndSOAP_Click()
Di m oXMLHTTP As XM_LHTTP
Di m oDOM As DOVDocunent
Di m oXSL As DOVDocunent

143

" Call the web service to get an XM. docunent
Set oXMLHTTP = New XMLHTTP
OXMLHTTP. open "POST", "http://local host/ PubsWs/ PubsW5. asnx”, Fal se

Dim sB As String

sBody = "" & _
"<soap: Envel ope" & _
xmns: xsi =""http://ww. w3. org/ 2001/ XM_Schena-i nst ance""" & _
" xm ns: xsd=""http://ww. w3.org/ 2001/ XM_Schem""" & _
" xm ns:soap=""http://schemas. xm soap. or g/ soap/ envel ope/"">" &
"<soap: Body>" & _
" <Cet BooksByAut hor xm ns=""http://Oreily/DotNetEssential/"">" & _
" <sAut hor SSN>213-46- 8915</ sAut hor SSN>" & _
"</ Get BooksByAut hor>" & _
"</ soap: Body>" & _
"</ soap: Envel ope>"

OXMLHTTP. set Request Header "Content -Type", "text/xm"
OXMLHTTP. set Request Header " SOAPActi on",
"http://Oeilly/ Dot NetEssential s/ Get BooksByAut hor"

OoXMLHTTP. send sB

Set oDOM = oXMLHTTP. r esponseXNM.

Create the XSL docunent to be used for transformation
Set oXSL = New DOVDocunent
OXSL. Load App.Path & "\tenpl ateAuthorTitle.xsl"

Transform the XML docunent into an HTM. docunent
nyWebBr owser . Docunment . Wite oDOM transfor mNode(0XSL)
myWebBr owser . Docunent . Cl ose

Set oXSL = Not hi ng

Set oDOM = Not hi ng

Set oXMLHTTP = Not hi ng
End Sub

This method is structurally similar to the ones used for HTTP GET and HTTP POST; however, it has
some very important differences. In SOAP, you have to set the Cont ent - Type tot ext / xnl instead
ofapplication/ x-ww-formurlencoded asforthe HTTP POST. By this time, it should be
clear to you that only HTTP POST and SOAP care about the Cont ent - Type because they send the
data in the body of the HTTP request. The HTTP GET protocol does not really care about the

Cont ent - Type because all of the parameters are packaged into the query string. In addition to the
difference in format of the data content, you also have to refer to the WSDL to set the SOAPAct i on
header variable to the call you want. Looking back at the SOAP section of the WSDL, if you want to
call the Get Books(sAut hor SSN) method of the web service, you will set the SOAPAct i on header
variable toht t p: // Orei | | y/ Dot Net Essent i al s/ Get BooksByAut hor . On the other hand, if you
want to call the GetBooks(') method instead, the SOAPAct i on variable has to be set to
http://Oreilly/ Dot Net Essenti al s/ Get Books. The reason the namespace is

http://Oreilly/ Dot Net Essenti al s/ isbecause we set it up as the attribute of the PubsWs
web service class.

After setting up the header variables, we pass the parameters to the server in the body of the

message. Whereas HTTP POST passes the parameters in name/value pairs, SOAP passes the
parameters in a well-defined XML structure:

<soap: Envel ope ... nanespace omtted...">
<soap: Body>

144

.NET Framework Essentials

<Get BooksByAut hor xm ns="http://Oreilly/ Dot Net Essential s/">
<sAut hor SSN>213-46- 8915</ sAut hor SSN>
</ Get BooksByAut hor >
</ soap: Body>
</ soap: Envel ope>

Both the SOAP request and response messages are packaged within a Body inside an Envel ope.
With the previously specified request, the response SOAP message looks like this:

<?xm version="1.0"?>
<soap: Envel ope ...nanespace omtted...>
<soap: Body>
<Get BooksByAut hor Result xml ns="http://Oreilly/DotNetEssentials/">
<result>
<xsd: schema i d="NewDat aSet" ...>

<... content onmtted ...>

</ xsd: schema>
<NewDat aSet xml ns="">
<Books>
<title_ id>BU1032</title_id>
<title>The Busy Executive's Database CGuide</title>
<... nore ...>
</ Books>
<Books>
<title_id>BU2075</title_id>
<title>You Can Conbat Conputer Stress!</title>
<... nore ...>
</ Books>
<Aut hor >
<au_i d>213- 46-8915</ au_i d>
<au_l name>Gr een</ au_| nanme>
<au_f nanme>Marj ori e</ au_f nane>
<phone>415 986- 7020</ phone>
<address>309 63rd St. #411</address>
<ci ty>QCakl and</city>
<st at e>CA</ st at e>
<zi p>94618</ zi p>
<contract >True</contract>
</ Aut hor >
</ NewDat aSet >
</resul t>
</ Get BooksByAut hor Resul t >
</ soap: Body>
</ soap: Envel ope>

Figure 6-8 shows the result of the test form after invoking the GetBooksByAuthor web method using
the SOAP proto col.

Figure 6-8. VB client form after calling GetBooksByAuthor

145

e
[T | Peal |. Gomp |
[=]
List of hoaks written by Mearforie (rean (Crakdored, CA)
Title T_ﬂ)n Price Notes
The Basy E};Fcur-'c'i busmess '_;_p,t}m evcrview of am]s)::lc qmabasr Fyziems with emphasiz en
Diatabase Gude conmnsn busness applicabisns. Mustrated
Yeou Zan Combat bugiers 2 95 The ketest medical and psychological teckengues for bnang with the
Cidngier Stresg! B electronic office. Eagy-to-understand explanations.
L |

The XSL stylesheet used for transformation of the resulting XML to HTML is included here for your

reference. Notice that since GetBooksByAuthor returns two tables in the dataset, author and books,
we can display both the author information and the books that this author wrote.

<htm version="1.0" xmns:xsl="http://ww. w3. org/ TR/ \D- xsl| ">
<head><title>A |ist of books</title></head>
<styl e>
. hdr { background- col or =#f f eedd; font-wei ght=bold; }
</styl e>
<body>
Li st of books written by
<| ><xsl : val ue- of sel ect="//Aut hor/au_fnane"/>
<xsl : val ue- of sel ect="//Author/au_l name"/ >
(<xsl:value-of select="//Author/city"/>,
<xsl :val ue- of sel ect="//Author/state"/>)
</[l>
</ B>
<tabl e styl e="border-col | apse: col | apse" border="1">
<tr>
<td class="hdr">Title</td>
<td class="hdr">Type</td>
<td class="hdr">Price</td>
<td class="hdr">Not es</td>
</[tr>
<xsl:for-each sel ect="//Books">
<tr>
<t d><xsl :val ue-of select="title"/></td>
<t d><xsl :val ue-of select="type"/></td>
<t d><xsl :val ue-of select="price"/></td>
<t d><xsl :val ue-of sel ect="notes"/></td>
</[tr>
</ xsl :for-each>
</t abl e>
</ body>
</htm >

As you can see, we can easily have any type of web service clients accessing .NET web services. The
clients to the web services need to know how to communicate only in HTTP and understand the Web
Services Description Language (WSDL) to communicate with the server. By the same token, we can

also develop web services in any language and on any platform as long as we adhere to the
specification of WSDL.

6.5 Web Services and Security

This section demonstrates how to incorporate security into your web service. We will do so in two
ways: system security and application security. System -level security allows for restricting access to
the web services from unauthorized clients. It is done in a declarative fashion, whereas application -
level security is more flexible. With system-level security, you will most likely have the list of authorized
clients' IP addresses that you will let access your web service through the use of some configuration-

146

.NET Framework Essentials

management tools. With application-level security, you will incorporate the authentication into your
web service, thus providing a more flexible configuration.

6.5.1 System Security

Because web services communication is done through HTTP, you can apply system -level security on
web services just as you do for other web pages or resources on your web site.

There are a number of different ways you can secure your web services. For a B2B solution, you can
use the 1IS Administration Tool to restrict or grant permission to a set of IP addresses, using the
Internet Protocol Security (IPSec) to make sure that the IP address in the TCP/IP header is
authenticated. When you rely only on the client to provide the IP in the TCP/IP header, hackers can
still impersonate other host IPs when accessing your web services. IPSec authenticates the host
addresses using the Kerberos authentication protocol. You can also use a firewall to restrict access to
your web services for your partner companies. For a business-to-consumer (B2C) scenario, you can
take advantage of the authentication features of the HTTP protocol.

To show how to use the authentication feature of the HTTP protocol to secure your web services, let's
revisit the example web service we have in this chapter, PubsWsS. All we have to do to secure
PubsWS web service is go to the IIS Admin Tool and choose to editthe Fi | e Securi ty properties
for the PubsWS.asmx. Instead of keeping the default setting, which leaves this file accessible to all
anonymous users, we change this setting to Basi ¢ Aut hent i cat i on. After this change, only users
that pass the authentication can make use of the web service.

For realdife situations, of course, we are not just going to use the Basic Authentication method
because it sends the username and password in clear text through the HTTP channel. We would
choose other methods, such as Secure Sockets Layer (SSL) underneath Basic Authentication, so that
the data passed back and forth is secure. Available methods include:

Basic Authentication

Sends the username and password to the web server in clear text. IIS authenticates the login
against the database of users for the domain.

Basic over SSL Authentication

Similar to Basic Authentication, except that the username and password are sent with Secure
Sockets Layer (SSL) encryption.

Digest Authentication

Uses a hashing technique, as opposed to SSL encryption, to send client credentials securely
to the server.

Integrated Windows Authentication
Good for intranet scenarios only. Uses the login information of the client for authentication.
Client Certificates Authenticatio n

Requires each of the clients to obtain a certificate that is mapped to a user account. The use
of clientside digital certificates is not widespread at this time.

147

6.5.2 Application Security

A less systematic way of securing your web services involves taking security into your own hands. You
can program your web services so that all of their methods require an access token, which can be
obtained from the web service after sending in the client's username and password. The client
credentials can be sent to the server through SSL, which eliminates the risk of sending clear-text
passwords across the wire. Through this SSL channel, the server returns an access token to the caller,
who can use it to invoke all other web service methods. Of course, all of the other web methods that

you publish have to have one parameter as the token. A simple pseudocode example of a bank
account web service can be as follows:

Web Service Bank Account
Web Met hods:
Logi n(user id, password) returns access token or nothing
Deposit (access token, account nunber, anount, balance) returns T/F
W t hdr aw(access token, account number, anount, bal ance) returns T/F

The only method that should be on SSL is the Login method. Once the token is obtained, it can be

used for other web methods. Of course, you should be able to make sure that subsequent calls using
this token are coming from the same IP as the

Login() call. You can also incorporate an expiration timestamp on this access token to ensure that the
token only exists in a certain time frame until a renewal of the access token is needed.

The Microsoft .NET Cryptographic Services can be very useful if you choose this route. DES, RC2,
TripleDES, and RSA encryption/decryption algorithms are supported along with hashing methods such
as SHA and MD5. These implementations in the .NET library enable developers to avoid low -level
grunt work and focus on the application logic.

6.6 Summary

In this chapter, we've introduced you to the new paradigm of application—the enterprise application.
You are no longer restricted to homogeneous platforms for implementing your solutions. With
Microsoft Web Services, your solutions can span many different platforms because the communication
between Web Services is done through standard Internet protocols such as HTTP and XML. The
distributed components in Windows DNA with which you may be familiar are now replaced by Web
Services. Using Web Services as components in a distributed environment allows for a heterogeneous
system. Not only do the Web Services in your system not have to be implemented in the same
language, they don't even have to be on the same platform. Because of this greater interoperability,
Web Services are very suitable for business-to-business (B2B) integration.

148

.NET Framework Essentials

Chapter 7. Web Forms

This chapter introduces the next technology for providing dynamic and interactive web pages.
ASP.NET takes ASP a step further to simplify the development process of web pages and enhance
scalability of web applications. First, we review the conventional way of developing web applications
using ASP to uncover some of the pitfalls that ASP.NET overcomes. We then discuss the benefits of
ASP.NET and provide a high-level survey of the classes in the ASP.NET, such as control and page,
as well as the complete syntax of ASP.NET Web Forms. To wrap up the chapter, we discuss the many
aspects of ASP.NET development: how ASP.NET supports Web Services development, how to use
custom server controls, and how session management has been improved to provide more scalable
web solutions.

7.1 ASP

Microsoft Active Server Pages (ASP) is a server -side scripting technology enabling dynamic web
pages. An ASP page contains HTML markup and server-side scripts that dynamically generate HTML
content. The serverside scripts run when a request for the ASP page arrives at the web server. Inputs
to the ASP page come from the client browsers through HTTP POST and GET methods. ASP
provides an object model to simplify developers' tasks. Besides using objects from the ASP object

model, such as Application, Server, Request, Response, and Session, developers can also use any
other COM components available on the server.

If you've already been developing web applications using ASP, you probably agree that it is very easy
to end up with intertwined, possibly conflicting HTML markups and server-side scripts. The poor
encapsulation model of ASP pages makes them difficult to manage and reuse. Attempts have been
made to improve upon this model, including server -side include files and parameterized functions in
scripts; however, these attempts come with trade-offs such as time, the management of a network of
include files, the performance impact of having nested includes, as well as object ID and variable -
scope management.

Developers that deal with cross-brow ser web applications also run into problems generating HTML
according the client's browser capability. Most of the time, we end up generating only the simplest
HTML tags and clientside scripts, which can be understood by many browsers, and foregoing the
features of the more advanced browsers. The resulting web application can be only as good as the
worst browser it supports. Sometimes, we also attempt to generate different HTML markups for
different browsers to take advantage of browser-specific features, resulting in much better client-side
experience; however, this involves much more development time and effort.

Since scripting in ASP is available only to late -bound languages such as VBScript and JavaScript,
type -safety is not an option. In addition, serverside scripts in ASP pages get reinterpreted each time
the page is accessed, which is not ideal for performance.

Form -state maintenance in an ASP-based application is also labor intensive—developers must do
everything manually, including reposting data, using hidden fields, and session variables. At times,
web applications are configured to run in web farm environments where there is more than one web
server available to the client. Maintaining session states becomes much harder in these scenario
because it is not guaranteed that the client would return to the same server for the next request.
Basically, the developers have to save states manually to SQL Server or other external storage.

While ASP is a great technology to build dynamic web pages, it has room for improvement. ASP.NET
evolved from ASP and overcomes most, if not all, of its shortfalls.

7.2 ASP.NET

Visual Basic developers have long enjoyed the ease of programming with forms and controls. Writing
a VB form-based application is as simple as dragging some controls onto a form and writing some

149

eventhandling functions. This is one of the reasons VB has attracted lots of programmers interested
in speed of development. Microsoft wisely built this feature into ASP.NET.

ASP.NET simplifies web page development with form-based programming. In ASP.NET, these forms
are called Web Forms and are analogous to VB forms, replacing ASP pages. Similar to VB, Web
Forms programming is also event based. We don't have to write in-line ASP scripts and rely on the
top-down parsing interpretation as in ASP programming. To match the rich set of ActiveX controls that
VB programmers love in their toolset, ASP.NET equips ASP programmers withserver controls. To
further enhance the productivity of developers, ASP.NET's Web Forms also allow for the separation of
the application logic and the presentation layer.

ASP.NET evolves from the ASP programming model with the following additional benefits:

Clean separation between the application logic (server-side code) and the pres entation layer
(HTML markup)—no more spaghetti code

Arich set of server controls that automatically render HTML suitable for any clients and that
additionally manage their states

Enhanced session-state management

An eventbased programming model on the server side, which is simpler and more intuitive
Application logic that can be written in any Microsoft .NET language (VB, C#, Managed C++,
etc.); application server-side code is compiled for better performance

Visual Studio.NET as a RAD tool, which simifies the development process of Web Forms

7.3 The System.Web.Ul Namespace

Before getting straight into developing your favorite Hello, World! application in ASP.NET, we feel it's
important that you become familiar with the underlying structure of ASP.NET. This section describes
some of the most important classes packaged in the System.Web.Ul namespace in the ASP.NET
framework.

The System.Web.Ul namespace defines classes and interfaces used in constructing and rendering
elements on a Web Form. The most i mportant class in the System.Web.UI is the Control class, which
defines properties, methods, and events that are common in all server controls in the Web Forms
framework. Another important class in this namespace is Page, which is a derivative of the Control
class. All ASP.NET web pages are instances of derivatives of the Page class. To have an extensible
framework, the System.Web.Ul namespace also includes the UserControl class, which is similar to the
Page class except that it is mainly used as the base class for user controls. We will make use of the
UserControl and Page classes in "Custom Server Controls" and "ASP.NET Application Development"
later in this chapter.

7.3.1 Control Class

The Control class is the root of all controls. For example, a text box is a control; a button or a combo
box is also a control. The Control class basically encapsulates common functionalities and properties
of all user-interface widgets. As you get deeper into ASP.NET development, everything you see is a
Control derivative of some sort.

7.3.1.1 Control's properties

The Control class has the following important properties: Controls, ID, Parent, EnableViewState,
Visible, Context, and ViewState. We will go over each of these properties briefly to show you what the
Control class is made up of and how deriving from Control class would create a model that is
consistent and easy to work with.

The Controls property represents the children of the control instance; the Parent property defines the
parent of the control. Together, thes e two properties enable a hierarchy of controls on a web page.
The ID property allows the control to be accessed programmatically by just using the ID and the dot

15C

.NET Framework Essentials

notation to get to the object's properties and methods, i.e., MyObjectld.propertyname. It als o allows us
to write event handlers for events raised by this control.

The EnableViewState flag indicates whether the control will maintain its view state, as well as all view
states of its child controls. If this flag is set to t r ue, the control will rem ember its previous view state
when the page posts back to itself 2L For example, if EnableViewState is set tot r ue, when the user
performs some operation that requires a postback, the user's previous selection or form-field data are
preserved automatically. When the page is sent back to the browser, the user can just continue filling
in the form as if he never left it. This is how all derivatives of the Control class maintain their states
between requests and free developers from the plumbing works with hidden form fields.

[postback is the condition when an ASP page posts the data back to itself for processing. In conventional ASP programming, the state
of the fields in the form have to be managed manually. In ASP.NET, we can have these field states managed automatically with a simple

EnableViewState flag.

The Context property enables us to get to information about the current HTTP request, suchas the
Application, Server, Session, Request, and Response objects. ASP developers should be familiar with
these intrinsic objects. You will most likely use the Context property when you are processing the web
page's OnLoad event to get to application or session-level variables and request parameters to set up
your page. Through the Context property, you can also get other information, such as cached
resources, including database connections, for performance improvement; the trace property, for
debugging p urposes; and the user property, for security validation.

The ViewState property is an instance of the StateBag class, which is used to store name/value pairs
of information that can be made accessible across multiple requests for the same web page. These
name/value pairs are instances of the Stateltem class.

7.3.1.2 Control class methods

The list of methods for the Control class is much longer than what we've covered in this section;
however, this short list is probably all you need to know to get started with the Control class:

DataBind method
Binds the control to a data source. This method is used in conjunction with the data -binding
expression syntax on the Web Form. When this method is called, all data-binding tags, <%
%>, are re -evaluated so that the new data is bound to the appropriate tag location.

CreateChildControls method

Called before any compositional custom control is rendered. A compositional custom control is
similar to an ActiveX control: it composes other controls. You would not use this method
simply to use the control. When developing custom controls, this method can be overridden so

that custom-control developers can create and layout child controls prior to rendering the
control, whether for the first time or for postbacks.

Render method

Similar to the CreateChildControls, primarily used to develop custom controls. Control
developers override this method to render the control content through the provided
HtmITextWriter parameter.

We will revisit the Render and CreateChildControls methods when we show you how to create
custom controls in Section 7.5.4 later in this chapter.

SaveViewState and LoadViewState methods

151

Save and reload the state for the control. Server controls maintain their state between
requests via these methods.

7.3.2 Page Class

As mentioned earlier, the Page class is actually a derivative of the Control class. This means it inherits
all properties, methods, and events exposed by the Control class. In addition to the inherited things,
the Page class defines more specific properties, methods, and events for a web page in the ASP.NET
framework.

If you've done ASP development, you already know that Application, Request, Response, Server, and
Session are intrinsic objects that you can access while scripting your ASP page. With ASP.NET, these

objects are actually properties of the Page class. In addition to these familiar objects, the Page class
also exposes other properties such as Cache, ErrorPage, IsPostBack, IsValid, Trace, and Validators.

7.3.2.1 Page class properties and methods

This list is not complete; however, it includes some of the more important features that we want to
introduce:

Cache property

Points to a Cache object of the Context for the current page. Here, resources such as
database connections are stored for reuse without having to recreate the connection, given
that the cache item is not yet expired.

ErrorPage property

Specifies the page to display when an error occurs. You can also specify the error page by
using the @Page directive as shown in Section 7.4 in this chapter.

IsPostBack property

Indicates whether the page request is an original request or a postback, since the interaction
between the user and the server controls requires a postback to the current page. If
IsPostBack ist r ue, you should not redo all your page initialization to improve performance.

Validators property

Groups together server controls that can validate themselves inside the Validators property of
the Page. (In ASP.NET, a web page usually consists of a number of server controls.) This is
so that when the Page needs to validate itself, it can delegate the validation to all of these
controls and then set the IsValid property to the appropriate value.

Trace property

References a TraceContext object, through which you can issue warning or error messages.
Tracing can be switched on or off at anytime from theweb. confi g setting. web.config is an
XML-based text file that stores the runtime configuration for an ASP.NET application.
Changes to this file take effect immediately, unlike global.asa in ASP development. The main
configuration file is at the root of your web application; however, you can have a configuration
file for each subdirectory in your web application. The closest configuration file overrides the
settings of distant configuration files. Being able to switch off tracing in a configuration file like
this is much better than doing so manually in ASP development, where you must go through
all ASP files to remove all instances of Response.Write debugging messages when you are
ready to deploy your application.

152

.NET Framework Essentials

LoadControl method

Loads server controls into the page programmatically. You can also have static server control

declared on the page using the serversside object syntax as described inSection 7.4 later in
this chapter.

MapPath method

Maps a virtual path to a physical path for file I/0. Should be familiar to ASP developers.

Validate method

Works with the Server Validation Controls on the page to validate data on the page. If any of
the server controls fail to validate, this method returns f al se, and the failed server-validation
control renders the error message to the user.

CreateHtmITextWriter method

Produces an HtmITextWriter object to write HTML to the response stream. This is similar to
ASP's Response.Write method; however, the HtmITextWriter object is much smarter than the
raw Write method. It helps you write well-formed HTML.

SavePageStateToPersistenceMedium and LoadPageStateFromPersistenceMedium methods

By default, save and load view state for all controls as hidden fields on the page. If you don't
want this setting, you can override the SavePageStateFromPersistenceMedium method to
save the view state anywhere other than hidden fields. You will also have to override the

LoadPageStateFromPersistenceMedium method to have the saved view states loaded back
onto the page prior to rendering.

7.3.3 UserControl Class

The UserControl class is very similar to the Page class (see the previous section) with the omission of
page-specific properties or methods such as ErrorPage, IsValid, User, Validators, MapPath, Validate,
and CreateHtmITextWriter.

The UserControl class is typically used as the base class for custom controls. We can also build
custom controls by inheriting directly from the Control class; however, it's better to start from
UserControl because it is not as raw as the Control class. If you find that UserControl supports a
number of properties and methods that you don't really want in your custom control, you might choose
to inherit the raw Control class instead. We show you how to create custom controls in the Section
7.5.4 section later in this chapter.

7.3.4 System.Web.Ul.HtmIControls Namespace

If you've done any clientside DHTML scripting, you know how all HTML tags are mapped to scriptable

objects. ASP.NET brings this mapping to the server side. Before each time the web page is rendered
and sent back the client, you can access and manipulate each of the o bjects on the page.

ASP.NET maps HTML tags with objects in the hierarchy of server-side classes defined in the
System.Web.Ul.HtmIControls namespace. These server objects are called HtmIControls because they
closely mapped to standard HTML elements.

For e xample, here is a simple HTML page that relies on client-side scripting to change the output page
dynamically. (This page won't run on browsers that do not support client-side scripting or browsers
that have client-side scripting turned off.)

153

<htm >
<head>
<script | anguage=vbscri pt>
sub cmdl_onclick()
t xt Message. | nnerHtm =
"(Client-side) Your nane is
end sub
</script>
</ head>
<body>
<formid=frnl>
Enter Nane: <input id="txtName" type=text size=40>
<i nput type=button id=cndl value="Cick M">
</ span>
</forme
</ body>
</htm >

& frml. t xt Nanme. val ue

We will convert this page so that it relies on server control instead of the IE Document Object Model.
Since the output of the page is controlled from th e server side, the page works regardless of what kind

of browser you are using. One drawback to this is that all interaction with the page requires a postback
to the server.

To take advantage of server controls mapping, all you have to do is to add the i d and r unat
attributes, and your server-side script will be able to access and manipulate the server controls:

<htm >
<head>
<script id=scrl | anguage=c# runat=server>
voi d svr_cndl_onclick(Object o, EventArgs e)

{
t xt Message. | nnerHtnm =
"(Server -side) Your nane is: " + txtNane.Val ue;
}
</script>
</ head>
<body>

<formid=frnl runat=server >
Enter Nane: <input id="txtName" type=text size=40 runat=server>
<i nput type=button id=cndl val ue="Click M"
onserverclick="svr_cndl_onclick" runat=server>

</ forme
</ body>
</htm >

By adding the r unat =ser ver attribute to the HTML form and its controls, you have exposed an
HtmlForm object, an HtmlInputText object, an HtmlIinputButton object, and an HtmIGenericControl

object (the span) to your serverside script, as depicted inEigure 7 -1. As you can see in the previous
script, you can manipulate the HtmlGenericControl object's txtMessage to set its InnerHtml property.

Figure7-1. Server-side scriptable objects for the code example

]

|
| HimllmpuiTaxe | [lerilnpmkurlnnl IHIrrilhmr'uEnmmI]

154

.NET Framework Essentials

Mostclasses in the System.Web.UI.HtmIControls namespace are derivatives of the HtmlControl class,
which in turn derives from the Control class of the System.Web.Ul nhamespace. SeeFigure 7-2 for a

graphical presentation of the hierarchy. The HtmIControl class serves as the base class for these
HtmlIControls because most HTML elements share common characteristics that are defined in this
HtmlIControl base class. They share pro perties such as ID, Disabled, Value, InnerHtml, InnerText,

Style, and TagName. Because these HtmIControls ultimately are derivatives of the Control class, they
also have methods and events that the Control class exposes.

HtmlConlral

Figure 7-2. HtmIControls object hierarchy

[HillapusCanrol | [HinlContainesContel | | Himllonge |
 HimliopetBunon | Hiform |
| Hinlinpebidden | f HimlGenericCoarral |
— dindoputinoge | HimlSeea |
— HimdnpotRodioBution |~ HimlTable |
— HilnpeiTert | f— HiwiTableCel
— HinlioputBution | f— HimlableRow |
— Himlinpetomiol | f— Himilexthres |
1 fimlinputbox | f Himlanchor |

Table 7-1 maps the HtmlControls to standard HTML tags. This means when you have an HTML tag

that is flagged to run on the server side withr unat =" server ", ASP.NET creates an appropriate

HtmlControl that you can program against.

Table 7-1. HtmIControls mapping to HTML tags

HTMLControl Description HTML tag
Htmlimage Image tag <i ng>
HtmlIinputFile File selector <i nput type="file">
HtmlInputHidden Used for hidden form fields <i nput type="hidden">
Htmllnputimage Image input <i nput type="inage">
HtmllinputRadioButton [Radio button <i nput type="radio">
HtmlInputText Standard text input <i nput type="text">
HtmlInputButton Standard HTML button <i nput type="button">
HtmlInputCheckBox Standard HTML checkbox <i nput type="checkbox">
HtmIForm Form tag <f or e
HtmlGenericControl Miscellaneous generic HTML tags <span, div, etc.>
HtmlSelect Standard HTML drop-down control |<sel ect >
HtmITable Standard HTML table <t abl e>

155

HtmlITableCell A cell in a table row <t d>

HtmITableRow A row in a table <tr>

HtmITextArea Multiline text area <textarea rows=n col s=n>
HtmlAnchor Standard HTML hyperlink control or
HtmIButton HTML button <but t on>

7.3.5 System.Web.Ul.WebControls Namespace

While providing HtmIControls, which map to standard HTML elements, ASP.NET also provides
another group of Ul controls, the WebControl class (see Figure 7 -3). In addition to providing all
traditional controls similar to HtmlControls, WebControls also provide much richer controls such as
Calendar, Grid, and Validator.

WebControls are richer, more powerful, and more flexible than HtmIControls. It seems that it is the
natural choice for new ASP.NET applications; however, HtmlControls are better if you are migrating
ASP applications. Another thing that might make you consider using HtmlControls is that with it, your
client-side scripts can still access and manipulate the objects.

Most classes in this namespace are based on WebControl, which is again a derivative of the Control

class. The WebControl class provides the common properties and methods inherited by all of its
descendants, including access key, tab index, tool tip, color, font, and border setting.

Figure 7-3. WebControls object hierarchy

BT
o —F S S
H RadioButionlist | Beselalidotor | H b | H kel |
-{ CheckBoxList | CustomValidator | -{ Celendor |
H DropDownlist | fegulnrExpresioniaidator) | CheckBox | TobleRow |
S o | RequiredFiekdiolidoror | I—| Radiofution | L— DatoGiridnem |

BuseCompariolidator | | Dewlisthem |

GompareVolidatr | Hyperlink |
Dutefiid tangeValidator | H Imoge |

LinkBution

ValidstorSummary

Texifox

i

7.4 Web Form Syntax

Similar to Active Server Pages, Web Forms are text files consisting of HTML tags and other controlling
tags such as directives and script blocks. The default extension for web forms is aspx ; however, you

can use the IIS administration tool to map other file extensions explicitly with aspnet_isapi.dll to have
them parsed and compiled when accessed, as if they were ASP.NET resources.

156

.NET Framework Essentials

There are ten different syntax elements in ASP.NET; because most of them are carried over from ASP,
we list here the familiar ones and discuss only those that are important in ASP.NET:

Directives

Code declaration blocks
Code rendering blocks

HTML control syntax

Custom control syntax

Data -binding expressions
Server -side object tags
Server -side include directives
Server-side comments

Literal text

7.4.1 Directives

Previously, all ASP directives were formatted as <%@| at t ri but e= val ue] " 96 because there was
only one type of directive.&

[21 As noted in the Preface, the plus sign here indicates one or more instances of the preceding term in brackets.

ASP.NET adds a humber of directives to ASP.NET files. With the new list of directives —Page, Control,
Import, Register, Assembly, and OutputCache—the syntax for directive is now<%@di rect i ve
[attribute=val ue] " %-. All of the old ASP directives are attributes under the Page directive. If you

use the old syntax by omitting the directive name, the attribute/value pairs will be applied to the default
directive, which is Page.

7.4.1.1 @ Page

In addition to containing all previous ASP directives (CodePage, EnableSessionState, Language,
LCID, and Transaction), the ASP.NET Page directive also supports the important attributes ErrorPage,

Inherits, Src, and EnableViewState, which we will make use of in this chapter. The complete list of all
attributes for the Page directive can be found in the.NET Framework Developers' Guide.

<@ Page Language="VB" ErrorPage="URL" Enabl eVi ewSt ate="true">
7.4.1.2 @ Control

Similar to the way the Page directive is used for an ASP.NET page (an .aspx file), the Control directive

is used for an ASP.NET control (an .ascx file). (We get into developing ASP.NET controls inSection
7.5.4 later in this chapter.)

7.4.1.3 @ Import

We can use the Import directive to add namespace references to the current page. Your code can
access all classes and interfaces of imported namespaces. For example, if you want to use ADO.NET,
you would include the following code:

<%@ | nport Nanespace="System Data" %
<%@ | nport Nanespace="System Data. d eDb" %

A number of namespaces are automatically imported into all ASP.NET pages to simplify the
developers' task:

System
System.Collections

157

System.|O

System.Web

System.Web.UI
System.Web.Ul.HtmIControls
System.Web.Ul.WebControls

7.4.1.4 @ Register

This directive registers custom server controls for use in the current page by specifying the aliases to
be used as prefixes for class names. It is used in conjunction with the custom server-control elements

to provide a concise way of specifying server-control names. The following line of code registers a
custom control to be used in this page:

<%@ Regi st er Tagprefix="Ch0o7"
TagName=" MyCust onCont r ol
Src="MCust onControl .ascx" %

The name of the contral is My Cust onCont r ol ; the prefix used when declaring the control is Ch07;
the source for the control is in\Viy Cust onCont r ol . ascx . (We will demonstrate this directive when we
develop our ASP.NET controls later in this chapter.)

7.4.1.5 @ Assembly

The AssemMby directive specifies to which assembly the current page belongs. This effectively makes

all the classes and interfaces belonging to the assembly accessible to the current page. For example,
the following line of code specifies that the current page belongs to the Ch07 assembly:

<%@ Assenbl y Nane="Ch07" %

This means that code in this page can access anything in the Ch07 assembly.

7.4.1.6 @ OutputCache

You can use the OutputCache directive to control the outputcaching duration for the current page.
This is similar to setting up the expiration for the response object in ASP programming. The Duration
attribute of the OutputCache directive defines the time in seconds until the page expires.

7.4.2 Code Declaration Blocks

As in ASP, code declaration blocks define the code to be parsed and run for the page. In these blocks,
ther unat attribute specifies whether the code block is clientside or server -side code. For server-side

programming, set this attribute toser ver. If you ignore ther unat attribute, 11S wil interpret the code
block as clientside code, which is used for Dynamic HTML (DHTML).

<script runat="server" [l anguage="codel anguage"] >
Code
</script>

For both clientside and server-side code declaration blocks, you can also use the src attribute to point

to an external source file containing the code. This is to help separate the code from the HTML content
of the page.

<script runat="server"
[anguage="codel anguage"]
[src="external fil ename"] />

158

.NET Framework Essentials
7.4.3 Code Rendering Blocks

There are no changes to this syntax versus that in ASP. Inline code or inline expressions specified in
these code rendering blocks are executed when the page is rendered. All these blocks are enclosed
between the tags <%and %->. The language used in these tags is specified inthe language attribute of
the Page directive.

7.4.4 HTML-Control Syntax

HTML controls are very similar to standard HTML elements, with the exception of the id and the runat
attributes. If you've developed web applications with DHTML, you should be familiar with the id
attribute of an HTML element and how to programmatically reference the clientside control
representing the HTML element. The difference in this case is that the control is not on the client side
but on the server side. For example, the following code represents an HTML server button control:

<i nput id="cndl" runat="server"
type="button" value="Click Me" />

All HTML server controls must be inside a<f or mr unat =" ser ver " > control because web forms use
the POST method to maintain the controls ' states.

When encountering an HTML element tagged withi d and ther unat attribute settoser ver,
ASP.NET creates the appropriate scriptable server HtmIControl object. For example, the previous

HTML snippet generates a server HtmlControl of type HtmlInputButton with idcnd1 .

You can bind an event handler to this control's event to handle notification from this control, such as
the onclick event. There are two ways to bind an event handler to a control's event, the declarative
way and the programmatic way. The declarative is done inside the HTML element tag as an

attribute/value pair. The attribute is the name of the event, and the value is the name of the event
handling function. For example, to handle the onclick event, add this to the previous HTML tag:

onserverclick="handl eServerC ick"

The programmatic way to bind an event to the handler involves a line of code that assigns a delegate
to the event property of the control. In C#, the code to bind the ServerClick event of the button to the
event handler handleServerClick is:

cndl. ServerClick += new System Event Handl er (handl eServer Cl i ck);

If you've used client-side DHTML in your web applications, event binding should be nothing new to
you, except for some subtle differences. The first difference is obvious: the event handler runs on the
server before the page is sent back to the browser, instead of running on the client side. The other
difference is that all event-handler functions for server side have to have two parameters: Sender and
Event. The Sender p arameter indicates the source element that caused the event to happen; the
Event parameter is the actual event fired. In DHTML scripting, we would inspect the window.event
object to find out which element was the source of the event and other event information.

7.4.5 Custom-Control Syntax

Similar to HTML Server Controls, custom controls also have id and runat attributes; however, custom
controls are not standard HTML elements. To insert a custom control into a page, use the following
syntax:

<t agprefix:tagnane id="control |l D' runat="server" eventnane=
"event Handl er" />

159

Notice that all custom controls' tags have a tag prefix, which is an alias to the namespace in which the

control is defined. See the Register directive earlier in this chapter for information on registering
namespaces' aliases.

Binding events to their handlers for custom controls is the same as for HTML controls. Even though

we show the two ways of binding events, it is preferable to bind events using the second method
because it cleanly separates the HTML tags from the code behind the screen.

All web controls mentioned in the WebControls namespace can be inserted in the same manner
(these controls have the prefix asp). For example, you can have the following tags in your aspx page:

<asp: Text Box id=txt1l runat=server></asp: Text Box>
<asp: Button id=cndl runat=server Text="Web Button"></asp: Button>
<asp: Label id=labell runat=server></asp: Label >

These tags result in three objects generated from the three classes: TextBox, Button, and Label, from

the System.Web.Ul.WebControls namespace. In your server script, you can access and manipulate
these objects to render your page appropriately.

7.4.6 Data-Binding Expressions

Data-binding expressionsbind the server controls with some data sources. The syntax to bind data is:
<%t dat a- bi ndi ng-expressi on %

Let's examine the following block of code to see how the simplest data binding works:

<asp: Label text='<%t TestData %' runat=server/>

The data-binding expression here indicates that the label's text content is bound to a publicly defined
property, TestData, of the Web Form. This means that when data binding occurs for the form, <%

Test Dat a % will be replaced by the content of the TestData property. Let's define this property for
the Web Form:

public string TestData = "Hello Worl d";

The Web Forms page framework does not perform data binding automatically. The developers must
explicitly call the DataBind() method to activate the evaluation of the data-binding expression and
perform the substitution. We can call the page's DataBind method upon the page-load event or

whenever we change the TestData property and want it reflected on the page. This example calls
DataBind() upon page load to bind the Label's text to the TestData variable.

<htm >
<head><titl e>Data Bi ndi ng Sanple</title></head>
<body>

<script | anguage="C#" runat=server>
[* Declare the variable we want to bind to. */
public string TestDat a;
voi d Page_Load(Obj ect oSender, EventArgs oEvent) {
TestData = "Hello World!'\n";
Page. Dat aBi nd();
}

</script>

<asp: Label text='<%t TestData %' runat=server/>

16C

.NET Framework Essentials

</ body>
</htm >

Let's try something a little more complicated. In the next block of tags, we have three labels bound to
three different properties of an object called cur r St udent :

Nane: <asp:Label text='<% currStudent.FirstName %' runat=server/>
<asp: Label text='<% currStudent.LastName %' runat=server/>

SSN: <asp: Label text='<%# currStudent.SSN %' runat=server/>

The curr St udent object is a publicly accessible property of the current page.

<script | anguage="C#" runat=server>
public class CStudent {
/* Declare the variable we want to bind to. */
public string FirstName;
public string LastNane;
public string SSN;

public CStudent curr Student;

voi d Page_Load(Obj ect oSender, EventArgs oEvent) {
currStudent = new CStudent();
curr Student. First Name = "Jack";
curr Student. Last Nane = "Daniel";
currStudent.SSN = "123-45-6789";
Page. Dat aBi nd() ;

}

</script>

You can have thiscur r St udent object filled with data coming from any source then perform a
DataBind call to update the page with the current student's information. The assumption here, of
course, is that the Student class provides the previously mentioned properties.

7.4.7 Server-Side Object Tags

Server -side object tags statically declare and instantiate COM and .NET objects. The syntax to declare
server -side objects is:

<obj ect id="id" runat="server" class=".NET class nane">
<obj ect id="id" runat="server" progid="COM Progl D"'>
<obj ect id="id" runat="server" classid="COM cl assl D"'>

To dynamically add a server-side object to the page, you would use the Page.LoadControl() method.

7.4.8 Other Elements

Server -side includes, server-side comments, and literal text are exactly the same as in ASP. Therefore,
we will not go over them here.

7.5 ASP.NET Application Development

In conventional ASP programming, developers typically access the Request object to get the
parameters needed to render the page and render the content of the page through either the
Response object or code rendering blocks. We also use other ASP objects such as the Application,

161

Session, and Server objects to manage application variables, session variables, server settings, and
So on.

As mentioned earlier, ASP.NET is intended to change all this spaghetti madness by introducing a
much cleaner approach to serverside scripting framework: Web Forms, or programmable pages, and
server controls.

In the following sections, we cover the components of a Web Form, its life cycles, the server controls
that the Web Form contains, event handing for these server controls, as well as how to create your
own server controls.

7.5.1 Web Form Components

Similar to VB Forms, a Web Form consists of two components: the form with its controls and the code
behind it that handles events associated with the form's controls. A Web Form has the file

extension .aspx and contains HTML elements, as well as server controls. The code behind the form is
usually located in a separate class file. Note that while it is possible to have both the form and the

code in one file, it is better to have separate files. This separation of user interface and application
code helps improve the spaghetti-code symptom that most AS P-based applications are plagued with.

ASP.NET provides the Page class in the System.Web.Ul namespace. This class encapsulates all
common properties and methods associated with web pages. The code behind the class derives from
this Page class to provide e xtensions specific to the page we're implementing. The aspx file provides

the form layout and control declarations. Eigure 7-4 illustrates the relationship between the Page
base class, the Web Form code behind the class, and the Web Form user interface (Ul).

Figure 74. Web Form components

Poge doss
in Syshem, Web. U1
PIMEspae
£
Wb Form —E—
Weh Form Code (ode bohind associafion” | Web Form Ul {ospx)
Behind Closs Inherits from —
{¥B ar (# or ather .MET 1
lowgunges [—
‘—
I

As a Web Form developer, you will have to provide the latter two. The Web Form Ul is where you
declare server controls with appropriate IDs. The code behind the class is where you programmatically
access server controls declared in the Web Form Ul, as well as handle events from these controls.
The following simple example shows the aspx page, the code behind source file, and how they work
together. The aspx file (TestEvent.aspx) contains only HTML tags and a directive that links to the code
behind:

<%@ Page | anguage="c#" codebehi nd="Test Events. cs" inherits="CTest Events" %
<htm >
<head><titl e>Testi ng Page Events wi th codebehi nd</titl e></head>
<body>
<f orm runat =server >
Init Time: <asp:Label id=labellnit runat=server/>

Load Tinme: <asp:Label id=label Load runat=server/>

162

.NET Framework Essentials

<i nput type=subnmit />
</form
</ body>
</htm >

The code-behind, TestEvent.cs, contains the class CTestEvents to which the aspx page is referring:

usi ng System

public class CTestEvents : System Web. Ul . Page {
protected System Web. Ul . WebControl s. Label | abellnit;
protected System Web. Ul . WebControl s. Label | abel Load;

public CTestEvents() {
| abel I nit = new System Web. Ul . WebControl s. Label ();
| abel Load = new System Web. Ul . WebControl s. Label ();
}

public void Page_Init(Object oSender, Event Args oEvent) {
| abel I nit. Text = DateTi ne. Now. ToString();
}

public void Page_Load(Obj ect oSender, EventArgs oEvent) {
| abel Load. Text = DateTi ne. Now. ToString();
i f(IsPostBack) {
| abel Load. Text += "(PostBack)";
}
}
}

You must compile TestEvent.cs and place the DLL in the/bin directory under your web application's
virtual directory before trying to access the aspx page The command to compile this C# file is:

BI The web Application directory is the root virtual directory where your web application resides. To set up the virtual directory, use the
1IS Administration Tool.

csc /t:library TestEvents.cs

ASP.NET parses the Web Form files to generate a tree of scriptable objects, where the root is the
Page-derived object representing the current Web Form. This is similar to how the IE browser parses

the HTML file and generates a tree of scripable objects to be used in DHTML; however, the tree of
objects for the Web Form files resides on the server side.

As you are already aware from our survey of the System.Web.Ul namespace, the Page class actually
derives from the Control class. In a sense, a Web Form is a hierarchy of Control-derived objects.
These objects establish the parent-child relationship through the Parent and Controls properties.

Besides the Controls and Parent properties, the Page class also provides other useful properties,
which are familiar to ASP developers —such as the Request, Response, Application, Session, and
Server properties.

Because the Web Form is nothing but a programmable page object, using this object-oriented model
is much more intuitive and cleaner than the conventional ASP development. As opposed to the linear

execution of serverside scripts on an ASP page, ASP.NET enables an event-based object-oriented
programming model.

Let's take an example of a web page that contains a form with numerous fields. One or more of these
fields display list information from a database. Naturally, we have code in the ASP page to populate
these fields so that when a user requests this ASP page, the generated page would have the content

163

ready. As soon as the last line of data is written to the browser, the ASP page is done. This means
that if there were errors when the user submits the form, we will have to repopulate all the database
driven form fields, as well as programmatically reselect values that the user chose prior to submitting
the form. In ASP.NET, we don't have to repopulate the database-driven fields if we know that the page
has already been populated. Furthermore, selected values stay selected with no manual handlings.
The next couple of sections describe the concept in mare detail.

7.5.1.1 Web Form events

The Page class exposes events such as Init, Load, PreRender, and Unload. Your job as a developer
is to handle these events and perform the appropriate task for each of these stages. This is much
better than the linear execution model in ASP programming, because you don't have to worry about
the location of your initialization scripts.

The first event that happens in the life of a Web Form is the Init event. This is raised so that we can
have initialization code for the page. The controls on the page are not yet created at this point. This
event is raised once for each user of the page.

The Load event follows the Init event. Subsequently, it is raised each time the page is requested.
When this event is raised, all child controls of the Web Form are loaded and accessible. You should
be able to retrieve data and populate the controls so that they can render themselves on the page
when sent back to the client.

The following example shows the how the Init and Load events can be handled in ASP.NET. In this
example, we show both the HTML and its code together in one file to make it simpler:

<htm >
<head><titl e>Testi ng Page Events</titl e></head>
<body>

<script | anguage="C#" runat=server>
void Page_Init(Object oSender, EventArgs oEvent) {
| abel I nit. Text = DateTinme. Now. ToString();

}

voi d Page Load(Obj ect oSender, EventArgs oEvent) {
| abel Load. Text = DateTi ne. Now. ToString();
i f(IsPostBack) {
| abel Load. Text += "(PostBack)";
}
}

</script>

<form runat =server >
Init Time: <asp:Label id=labellnit runat=server/>

Load Tinme: <asp: Label id=label Load runat=server/>

<i nput type=submit />
</form
</ body>
</htm >

The first time you access this page, the Init event happens, followed by the Load event. Because
these events happen rather quickly, both the Init Time and Load Time would probably show the same

time. When you click on the submit button to cause the page to reload, you can see that the Init Time
stays what it was, but the Load Time changes each time the page is reloaded.

The PreRender event happens just before the page is rendered and sent back to the client. We don't
often handle this event; however, it depends on the situation.

164

.NET Framework Essentials

The last event in the life of a Web Form is the Unload event. This happens when the page is unloaded
from memory. Final cleanup should be done here.

Beside these page-level events, controls on the page can also raise events such as ServerClick and
ServerChange for HtmIControls, as well as Click, Command, CheckedChanged,
SelectedindexChanged, TextChanged events for WebControls. It is the handling of these events that
makes ASP.NET truly dynamic and interactive.

7.5.2 Lifecycle of aWeb Form

In ASP, the web page starts its life when a client requests a particular page. IIS parses and runs the
scripts on the ASP page to render HTML content. As soon as the page rendering is complete, the
page's life ceases. If you have forms that pass data back to the ASP page to be processed, the ASP

page runs as a new request, not knowing anything about its previous states. Passing data back to the
original page for processing is also referred to as postback.

In ASP.NET, things are a little different. The page still starts at the client's request; however, it stays
around for as long as the client is still interacting with the page. For simplicity's sake, we say that the
page stays around, but in fact, only the view states of the page persist between requests to the page.
These view states allow the controls on the server to appear as if they are still present to handle
server events. We can detect this postback state of the page via the IsPostBack property of the Page
object and forego certain costly reinitialization. The handling of events during these postbacks is what
makes ASP.NET so much different than conventional ASP development.

In the following example, we extend the previous example to handle the postback. When the Load
event is handled for the first time, we populate the drop-down list box with data. Subsequently, we
indicate only the time the event is raised without reloading the data. This example also demonstrates
the server event handler hand| eBut t onCl i ck that was bound to theSer ver Cl i ck eventofthe
button:

<htm >
<head><titl e>Testi ng Page Events</title></head>
<body>

<script |anguage="C#" runat=server>
voi d Page_lnit(Object oSender, EventArgs oEvent) {
| abel Init. Text = DateTi ne. Now. ToString();
}

voi d Page_Load(Obj ect oSender, Event Args oEvent) {

| abel Load. Text = DateTi ne. Now. ToString();

i f(!lsPostBack) {
selectCtrl.ltens. Add("Acura");
selectCtrl.ltems. Add("BW\V);
selectCtrl.ltens. Add("Cadillac");
selectCtrl.ltens. Add(" Mercedes");
selectCtrl.Itens. Add(" Porche");

} else {
| abel Load. Text += " (Postback)";

}

}

voi d handl eButtonCl i ck(Cbject oSender, EventArgs oEvent) ({
| abel Qut put. Text = "You' ve selected: " + selectCtrl. Val ue;
| abel Event . Text = DateTi ne. Now. ToString();

}

</script>

<form runat =server >

165

Init Time: <asp:Label id=labellnit runat=server/>

Load Tinme: <asp: Label id=label Load runat=server/>

Event Tinme: <asp: Label id=label Event runat=server/>

Choi ce: <select id=selectCtrl runat=server></sel ect>

<asp: Label id=label Qut put runat=server/>

<i nput type=button val ue=update

OnServer Cl i ck="handl eButtonCl i ck" runat=server />

</ forme

</ body>
</ html >

The life cycle of a Web Form consists of three main stages: Configuration, Event Handling, and
Termination. As mentioned earlier, these stages span across many requests to the same page, as
opposed to the serving-one-page-at-a-time policy found in ASP.

7.5.2.1 Configuration

In the Configuration stage, the page's Load event is raised. It is your job to handle this event to set up
your page. Because the Load event is raised when all the controls are already upand ready, your job
is now to read and update control properties as part of setting up the page. In the previous code
example, we handled the Load event to populate the drop-down list with some data. We also updated
the labelLoad control's Text to display the time the Load event happens. In your application, you will
probably load the data from a database and initialize form fields with default values.

The page's IsPostBack property indicates whether this is the first time the page is loaded or ifitis a
postback. For example, if you have a control that contains a list of information, you will only want to
load this control the first time the page is loaded by checking the IsPostBack property of the page.
When IsPostBackist r ue, you know that the list cortrol object is already loaded with information.
There is no need to repopulate the list. In the previous code example, we skipped over the population
of the drop-down and just displayed a string" (post back) ".

You might need to perform data binding and re-evaluate data-binding expressions on the first and
subsequent round trips to this page.

7.5.2.2 Events Handling

In this middle stage, the page's server eventhandling functions are being called as the result of some
events being triggered from the client side. These events are from the controls you've placed on the
Web Form. Eigure 7 -5 depicts the life cycle of an event.

Figure 7-5. The Web Form event life cycle

Event starts, confrod is fransferred to
Web Form e server event-handling fonction. Web Form
intial page Code Behind Component

Wah Farm |_ ﬁ‘ Randling Function

posted back page Poge is altared and sent
bark fe the cliant,

7.5.2.3 Termination

At this stage, the page has finished rendering and is ready to be discarded. You are responsible for
cleaning up file handles, releasing database connections, and freeing objects. Even though you can

166

.NET Framework Essentials

rely on the CLR to perform garbage collection for you, we strongly advise you to clean up after
yourself because garbage collection only happens periodically. On heavily loaded systems, if the
garbage-collection cycle is not optimal, the unfreed resources can exhaust memory and bring your
system to a halt.

We can perform the clean up for the previous example with the Unload event handler as shown here.
Because there is nothing to clean upin this simple example, we just show you the function as a
template:

voi d Page_Unl oad(Obj ect oSender, EventArgs oEvent) {
/'l cleaning up code here

}
7.5.3 Server Controls

As we saw from the System.Web.UIl.HtmIControls and System.Web.UI. WebControls namespaces,
server controls are programmable controls that run on the server before the page is rendered by
ASP.NET. They manage their own states between requests to the same page on the server by

inserting a hidden field storing the view state of the form. This eliminates the need to repopulate the
value of form fields with the posted value before sending the page back the client.

Server controls are also browser independent. Because they are run on the server side, they can rely
on the Request.Browser property to get the client's capability and render appropriate HTML.

Since the server controls are just instantiations of .NET classes, programming the server controls

yields easyto-maintain code. Especially when you have custom server controls that encapsulate other
controls, web application programming becomes nothing more than gluing these blocks together.

All HTML controls and web controls mentioned in System.Web.UIl.HtmIControls and
System.Web.Ul.WebControls are server controls shipped with ASP.NET.

7.5.4 Custom Server Controls

As you become more familiar with the ASP.NET framework and the use of server controls on your
Web Form, you will eventually need to know how to develop these server controls yourself. In
ASP.NET, there are two ways of creating cus tom server controls: the pagelet approach, which is easy
to do but rather limited in functionality, and the Control base class (or UserControl) derivative
approach, which is more complicated but also more powerful and flexible.

7.5.4.1 Pagelets

Until rece ntly, code reuse in ASP development has been in the form of server-side includes. If you
have common Ul blocks or scripts, you can factor them into an include file. Use the syntax <! - -
#includefile="url" -->toinclude the common file into the main page to return to the browser.
This approach is fine, but it has serious limitations. The main thing is to make sure the HTML tag IDs
and script variable names are unique. This is because |IS does nothing more than merge the include
file when it parses server-side includes. The include file ends up being in the same scope with the
container file. You cannot include the same file twice because there will be tag ID and script conflicts.

With ASP.NET, you can factor out common HTML and scripts into what is currently called a pagelet
and reuse it without worrying about the ID conflicts. A pagelet is a Web Form, without a body or a form
tag, that is accompanied by scripts. The HTML portion of the pagelet is responsible for the layout and
the user interface, while the scripts provide the pagelet with programmability by exposing properties
and methods. Because the pagelet is considered a user control, it provides an independent scope.
You can insert more than one instance of the user control without any problem.

167

The container Web Form must register the pagelet as a user control using the @Regi st er directive
and then include it on the page with the <pr ef i x: t agnane > syntax. If more than one copy of the
pageletis used in a container page, each of them should be given different IDs for the container
page's script to work correctly. The script on the container Web Form can access and manipulate the
pagelet the same way it does any other server controls.

The following example shows how an address form is reused as a pagelet. You might display this

address form to allow the web user to register with your application or to display the shipping and
billing addresses when the web user checks out:

<t abl e>
<tr>
<t d><asp: Label id=l abel Nane runat="server">Nanme</asp: Label ></td>
<t d><asp: Text Box i d=t xt User Nane runat ="server"
W dt h="332" Hei ght =" 24" ></ asp: Text Box></td>
</[tr>
<tr>
<t d><asp: Label id=l abel Addr1 runat="server">Address</asp: Label ></td>
<t d><asp: Text Box i d=txt Addr1 runat="server"
W dt h="332" Hei ght =" 24" ></ asp: Text Box></t d>
</tr>
<tr>
<t d><asp: Label id=l abel Addr2 runat="server"></asp: Label ></td>
<t d><asp: Text Box i d=txt Addr2 runat="server"
W dt h="332" Hei ght =" 24" ></ asp: Text Box></t d>
</[tr>
<tr>
<t d><asp:Label id=labelCity runat="server">City</asp:Label ></td>
<t d>
<asp: TextBox id=txtCity runat="server"></asp: Text Box>
<asp: Label id=label State runat ="server">St at e</ asp: Label >
<asp: Text Box id=txtState runat="server" Wdth="34" Hei ght="24">
</ asp: Text Box>
<asp: Label id=label ZI P runat ="server">Zl P</ asp: Label >
<asp: Text Box id=txtZl P runat="server" Wdth="60" Hei ght="24">
</ asp: Text Box>
</td>
</[tr>
<tr>
<t d><asp: Label id=l abel Email|l runat="server">Email </ asp: Label ></td>
<t d><asp: Text Box i d=txtEmai|l runat="server"
W dt h="332" Hei ght =" 24" ></ asp: Text Box></t d>
</tr>
</tabl e>

<script |anguage="C#" runat="server" |D=Scriptl>
public String UserNane {
get { return txtUserNanme. Text; }
set { txtUserNane. Text = val ue; }

}
public String Addressl {
get { return txtAddrl. Text; }
set { txtAddrl. Text = value; }
}
public String Address2 {
get { return txtAddr2. Text; }
set { txtAddr2.Text = value; }

}
public String City {

get { return txtCity. Text; }
set { txtCity.Text = value; }

168

.NET Framework Essentials

public String State {
get { return txtState. Text; }
set { txtState. Text = value; }

}
public String ZIP {
get { return txtZzZl P. Text; }
set { txtZlIP. Text = value; }
}

</script>

To use your pagelet, register it as a server control via the @regi st er directive, as shown in the next
block of code. After registering, include the tag for the pagelet as if it was a normal server control.
Specify the prefix, the tag name, the server control's ID, and set ther unat property toser ver:

<%@ Regi st er TagPrefix="Acnme" TagNane="Address" Src="Address.ascx" %
<%@ Page | anguage="c#" %
<html >
<head>
<script |anguage="C#" runat=server>
voi d Page_Load(Obj ect oSender, EventArgs evt) {

addr . User Name = "Jack Daniel";
}
</script>
</ head>
<body>
Wel cone to the E Shop.
Regi stering with E Shop will allow for nonthly updates of bargains...

<f orm met hod="post" runat="server">
<p><Acne: Address id=addr runat="server"></Acne: Addr ess></ p>
<p><asp: Button id=cndCl ear runat="server" Text="Cl ear"></asp: Button>
<asp: Button id=cndSubmit runat="server" Text="Submt">
</ asp: Butt on></p>
</forme
</ body>
</htm >

You should be able to programmatically access the prgperties of the pagelet through the server

control's ID, which is addr in this case. In the previous example, we accessed the UserName property
of the Address pagelet via its ID:

addr . User Nane = "Jack Daniel";

For an e-commerce checkout page, you could have two instances of <Acne: Addr ess> on the same
page: one for the billing and the other for the shipping address. Your script should access these
instances of the pagelet via the ID you assign to each address control.

You can also programmatically instantiate instances of the pagelet through the use of the Page's
LoadControl method. The first thing is to declare a variable of type Control in your script to host your
pagelet. This is because the Control is the root of all objects, including your pagelet. Then instantiate
the variable with a call to the LoadControl, passing in the filename of the control page. To make the
control visible on the page, add the control to the Page's collection of controls. Because you currently
have an instance of the Control object, you won't be able to call the pagelet's properties and methods
until you cast the variable from Control type to your pagelet type. This is similar to having an Object
variable in Visual Basic to hold a COM component. To access the COMcomponent methods and
properties, you would cast the Object variable to the component type. As currently implemented,
pagelets when loaded are automatically typed as pagenane_ext ensi on. For example, if your
pagelet were named myControl.ascx, the type generated for it would be myControl _ascx. The

169

boldface line in the following example shows you how to cast addr 1 from Control to type
Address_ascx in order for you to access the UserName property of the pagelet:

<%@ Regi st er TagPrefix="Acne" TagNanme="Address" Src="Address.ascx" %
<%@ Page | anguage="C#" %
<htm >
<head>
<script | anguage="C#" runat=server>
voi d Page_Load(Obj ect oSender, EventArgs evt) {
addr . User Nane = "Jack Daniel";
Control addr1i;
addr1 = LoadControl ("Address. ascx");
((Address_ascx)addrl1). User Nane = addr. User Nane;
this.frm Control s. AddAt (3, addrl);
}
</script>
</ head>
<body>
<form id=frm net hod="post" runat="server">
Billing Address:

<Acne: Addr ess id=addr runat="server"></Acne: Addr ess>
Shi ppi ng Address:

<p><asp: Button id=cndCl ear runat="server" Text="Cl ear"></asp: Button>
<asp:Button id=cnmdSubm t runat="server"
Text ="Subm t"></asp: Butt on></ p>
</fornp
</ body>
</htm >

This example, the checkout page, shows you how to declare a pagelet statically in your page with the
<Acne: Addr ess> tag, as well as how to dynamically create an instance of the custom control
Address with the Page's LoadControl() method. Once you've created the control dynamically, you
must cast the object to the control type before manipulating it.

The AddAt() method is used to insert the Address pagelet at a particular location in the checkout page.
Instead of declaring the dynamic pagelet as a Control, you can also declare it as its type, which is
Addr ess_ascx. This way, you just have to cast it once when loading the dynamic control:

Address_ascx addr2 = (Address_ascx) LoadControl (" Address. ascx");
addr 2. User Nane = "ABC";

7.5.4.2 Control derivatives

While it is easy to create custom controls using the pagelet approach, this technique is not flexible
enough to create more powerful custom controls, such as ones that expose events or hierarchy of
controls. With ASP.NET, you can also create custom controls by inheriting from the Control base class
and overriding a couple of methods.

The following example shows you how to create the simplest custom control as a Control derivative.

namespace MyWebControl s
{
usi ng System
usi ng System Web. Ul ;
usi ng System Web. Ul . WebControl s;
usi ng Syst em Conponent Model ;

public class MyWebControl : System Web. Ul . WbCont rol s. WebCont r ol
{

17C

.NET Framework Essentials

/I protected override void Render (Htm Text Witer output)

114

/1 output. Wite("custom control testing via Render()");
11}

protected override void CreateChildControls()

{
Table tbl = new Table();

Tabl eRow row = new Tabl eRow);

Tabl eCel |l cell = new TableCell();
HyperLink a = new HyperLink();

a. NavigateU |l = "http://nmsdn. m crosoft.coni;
a.lmageUrl = "image url";

cell.Controls.Add (a);
row. Cel I s. Add(cel I');
t bl . Rows. Add(r ow) ;

row = new Tabl eRowm);

cell = new TableCell ();

cell.Controls.Add (new Literal Control ("custom control testing"));
row. Cel I s. Add(cel |);

t bl . Rows. Add(r ow) ;

t bl . Border W dt h 1;
t bl . Border Styl e Bor der Styl e. Ri dge;
Control s. Add(tbl);
}
}
}

As you can see, the MyWebControl object derives from the WebControl class. We have seen that
WebControl ultimately derives from the base Control class. Allwe really do here is override either the
Render or the CreateChildControls methods to construct the custom web control. If you choose to
override the Render method, you will have to generate the HTML for your custom control through the
HtmITextWriter object, out put. You can use methods such as Write, WriteBeginTag, WriteAttribute,
and WriteEndTag.

In our example, we override the CreateChildControls method. Instead of worrying about the actual
HTML tag and attribute names, we create ASP.NET objects directly by their class names, such as
Table, TableRow, TableCell, HyperLink, and LiteralControl, to construct a hierarchy of objects under a
table. We can also manipulate attributes for the objects via their properties. At the end of the method,
we add the table to the custom control's collection of controls.

You will have to compile the previous control code to generate a DLL assembly. To use the control,
just deploy the assembly by copying it to the /bin directory of your web application. Then you should
be abl e to register the control with the @:egi st er directive and use the control as if it was a server

control provided by ASP.NET. If you are using Visual Studio.NET, you can add a reference to the
control assembly file or the control project for the test web project that uses the control.

Your custom-control test page should now look like the following:

<%@ Page | anguage="c#" %
<%@ Regi st er TagPrefi x="WC" Nanespace="MWWbControl s"
Assenbl y="WWebCont r ol s%
<htm >
<head>
<script | anguage="C#" runat=server>
voi d Page_Load(object sender, EventArgs e) {
MyWebControl s. yWebControl nyCtirl;

171

myCtrl = new WWebControls. yWebControl ();
this.Controls. Add(nyCtrl);

}
</script>
</ head>
<body>
<f orm net hod="post" runat="server">
This is the nmain page
<WC:. MyWebControl id=nyControll runat="server" />
</fornp
</ body>
</htm >

As you can see, we register the custom control with the @regi st er directive and alias the
namespace MyWebControls with the \\C prefix. In the body of the Web Form, we can add the custom -
control tag as<\\C: My\W\ebCont r ol >.

In addition to inserting the custom control onto the page declaratively as shown earlier, we can also
programmatically create the custom control at runtime. The Page_Load code demonstrates this point:

MyWebControl s. yWebControl nyCtrl;
myCtrl = new MyWebControls. \WWebControl ();
this.Controls. Add(nmyCtrl);

The output page is shown in Figure 7 6.

Figure 7-6. Custom control test output, statically and dynamically
This iz the main page

msdnonline

assential resounces for developers

custom control testing

msdnonline

essential resources for developers

custom control testing

7.5.5 Event-Driven Programming

There are two ways to associate event handlers—functions that handle the event—to the Ul controls.

Refer to the earlier section on Section 7.4 particularly where we describe the syntax for server
controls. All we do to bind an event from a control to an event handler is to use the

event name=event handl er nane attribute/value pair for the control. For example, if we want to
handle theonc! i ck event for the HTML control input, all we do is the following. Note that for the
HTML controls, the server-side click event is namedonser vercl i ck, as opposed to the client-side
click eventonc!| i ck, which can still be used in DHTML scripting:

<i nput id="cnd1" runat="server"
onserverclick="0OnC i ckHandl er"
type="button" value="click ne">

For an ASP.NET web control, the syntax is the same:

172

.NET Framework Essentials

<asp: Button id="cnd2" runat="server"
oncl i ck="0Oncl i ckHandl er 2"

Text="click me too"></asp: Button>

After binding the event to the eventhandling function name, we have to provide the actual event
handler:

void OnClickHandl er (obj ect sender, EventArgs e)
{

/'l code to retrieve and process the posted data

}

The second way of binding events is delegation. You don't have to have any notion of code in theaspx
file, not even the event-handling function name. All you have to do is to register the event handler with
the control's eventhandler property. For web controls, the event handler property for button click is

Cl i ck. For HTML controls, it's Ser ver Cl i ck:

Control ID. Click += new System Event Handl er (thi s. Event Handl er Nane) ;

Control I D. ServerClick += new System Event Handl er (this. Event Handl er Nane) ;
7.6 ASP.NET and Web Services

The ASP.NET framework simplifies development of web services. All the low-level work, such as
packaging and unpackaging data in XML format and utilizing HTTP protocol to transport the web

messages between distributed components, are done by the framework. This allows the developers to
focus on the application logic.

The .NET Framework usesasnx as the default file extension for web services, as opposed to aspx
for Web Forms and ascx for web controls.

7.6.1 The WebService Directive

Allasmxfiles start with the@\ébSer vi ce directive that instructs ASP.NET on how to compile the
code, as well as the main class name. The WebService directive has the following attributes:

Language

Specifies the language in which the code was written. This instructs the ASP.NET framework

to use the appropriate compiler to build your web service. Usevb for Visual Basic and c# for
C#. As other languages em erge, obviously you can specify other languages.

Class
Specifies the main class, which exposes web methods. The ASP.NET framework instantiates
this class in order to serve the web methods to the clients.

Codebehind

Specifies the source file for your code, which allows for complete code/ASP separation.

You can easily create a simple web service similar to the following asmx file:

<%@ WebServi ce Language="VB" Cl ass="MCl ass" %
Public Cl ass MyCl ass

173

Publi ¢ Function <WebMethod()> Add(a as integer, b as integer) as
i nt eger
Return a + b
End function
End cl ass

If you prefer to separate your code completely from any ASP.NET elements, you could have the code
for your web service saved in a separate file and specify the Codebehi nd attribute of the
@\ebSer vi ce directive to point to the code file:

<%@ WebServi ce Language="VB" Codebehi nd="MC ass.vb" Cl ass="MWC ass" %

7.6.2 The WebMethod Attribute

Public methods of any classes can be tagged with the WebMethod attribute to be made accessible
from the Web. The syntax for tagging attributes to methods is different for each .NET language. For
example, in C# the tag takes the following form:

[WebMet hod(attri bute="val ue" attribute="value" ...)]
public returnType Functi onNane(paransLi st)

In VB, angle brackets are used instead of square brackets, and the tag location is also different:

Publ i c Function <WebMet hod(attri bute="value" attribute="value" ...)>
Functi onNane(paransLi st) as returnType

Public Sub <WebMet hod(attribute="val ue" attribute="value" ...)>
SubNane(par ansLi st)

7.6.3 Using Web Services

If you are using Visual Studio.NET,EL you can choose Project?Add Web Reference and then typein
the URL where the web service resides. For our purpose, we'll point to the web service we created in
the last chapter, PubsWS. The URL to this web service on our server is
http://localhost/PubsWS/PubsWS.asmx After adding the web reference, you can access the proxy
object to the web service you are calling via the typeser ver name. pr oxyObj ect Nane. For your
case, itis| ocal host . Pubs\\&.

Bl we use VisualStudio.NET Beta 1 in this book.

The following code excerpt demonstrates how to use the web service thr ough the proxy. We create an
instance of the proxy object and then ask it to relay the message to the real web service to get the list
of authors. The result will be streamed back in XML format, which is reconstructed into a DataSet
object. We then bind Dat aGr i d1, which is just a DataGrid object that we have on the Web Form, to

the default view of the first table of the DataSet. Finally, we ask for the actual binding to take place.
The resulting page is the grid populated with rows from the Authors table of the Pubs sample database.

| ocal host. PubsWs ws = new | ocal host. PubsWs();
Dat aSet ds = ws. Get Authors();

Dat aGri d1. Dat aSour ce = ds. Tabl es[0] . Def aul t Vi ew;
Dat aGri d1. Dat aBi nd();

Instead of using Visual Studio.NET to locate and automatically generate the proxy class, you can also
use the information from the previous chapter to generate the source for the proxy class yourself. You
can then include this source or compile the source into a DLL and add the DLL to the project as a
reference. In any case, theend result is the same. Here is an example that links against the proxy we
created in the previous chapter and fills a grid with data:

174

.NET Framework Essentials

<%@ Page Language="C#" %
<%@ | nport Namespace="System Data" %

<l-- Link to the proxy generated by wsdl.exe -->
<%@ Assenbl y Src="PubsWs. cs" %

<htm >
<head>
<title>SOAP Client</title>
</ head>
<body>

<l-- Make the SOAP call and fill the data grid. -->
<%

PubsWs ws = new PubsWs();

Dat aSet ds = ws. Get Authors();

dg. Dat aSource = ds. Tabl es[0] . Def aul t Vi ew,

dg. Dat aBi nd();
%>

<l-- Create a data grid. -->
<asp: DataGid id="dg" runat="server"/>

</ body>
</htm >

7.7 Data Binding and the Use of Templates

While all web controls can be data bound, only DataGrid, DataList, and Repeater use a template to
control the display of data items. In this section, we show you how to perform simple data binding with
some common web controls and how to use an HTML template to provide fully customized data-
bound controls.

In its simplest form, data binding is the act of binding a control to a data source. Previously, data
binding required that an ADO recordset be a data source, which is not too flexible. There was no way
to bind, for example, an array or a collection of objects to a control. With ASP.NE T, the whole data-
binding business is revamped. The only requirement to make your data source bindable to web
controls is that your data source implement the System.Collections.ICollection interface. In other
words, a bindable data source is a collection of homogeneous objects that the web controls can obtain
data items from.

While it is possible to write your own data classes that implement the ICollection interface and bind
them to web controls, there exist numerous classes that do this for you, such as Array, ArrayList,
DataView, HashTable, Queue, SortedList, and Stack. All you have to do is put your data in these
forms, and you can bind your data to web controls.

Here is the simplest form of data binding. In the form file, all we have are two list boxes with ids| i st 0
and | ist1:

<asp:listbox id="list0" runat="server"></asp:!|istbox>
<asp:listbox id="listl" runat="server"></asp:!|istbox>

In the Page_Load event handler in the code-behind source file, we construct the data sources of type

Array, which implement the ICollection interface we mentioned earlier, and then bind the list controls
with the data sources:

int[] myArray0 = newint[7] { 1, 2, 3, 5, 7, 11, 13 };
string[] nyArrayl = new string[7] {
"Monday",

175

"Tuesday",
"Wednesday",
"Thur sday",
"Friday",
" Sat ur day",
"Sunday"
b
| i st0. Dat aSour ce
| i st0. Dat aBi nd(;
listl. DataSource = nyArrayl;
listl. DataBind();

myArray0;

~ ||

Figure 7-7 shows the output of this page.

Figure 7-7. Data binding with data from arrays

2 a| [Monday 4]
3 Tuesday

h J Wyiednasday

7 Thursdey

11 | |Fridey hd

Most of the time, we tend to bind data from data sources that come from a database. The next
example pulls data from the Categories table of the familiar NorthWind database. We can still use the
asp: | i st box control, but this time, we specify the item's property we want for the text, as well as the
value property of the list box. We did not have to do this for the previous example because the items
that the list box binds to are of simple types (int and string). If we were to have an array of objects, we
would have to specify the property we want to bind to dat aval uefi el d anddat at ext fi el d the
way we are in the following example:

<asp:listbox id=ListBoxl runat="server"
dat aval uefi el d="Cat egoryl D"
dat atext fi el d="Cat egor yNane" >

</ asp:|istbox>

Again, in the code-behind source file, we have the code to construct the data source and to bind the
data source to th e list control. Note that because we are using ADO.NET to get the data from the
database, we must have references to System.Data and System.Data.OleDb namespaces. The
DefaultView property of class Table is of type DataView, which implements the ICollection interface.

Dat aSet m ds =
String sConn =
"provi der =SQLOLEDB; server =(| ocal); dat abase=Nor t hW nd; ui d=sa; pwd=; "
String sSQ =
"select * from Categories”;

new Dat aSet ();

O eDbDat aAdapter da =
new O eDbDat aAdapt er (sSQ., sConn);
da.Fill(m.Jds, "Categories");

Li st Box1. Dat aSource = m. ds. Tabl es[" Cat egori es"]. Def aul t Vi ew,
Li st Box1. Dat aBi nd();

Figure 7-8 shows the output for this example.

Figure 7 -8. Data binding with data from a database

176

.NET Framework Essentials

Bevearages
Condiments
Confections
Dairy Procucts
Grains/Cerzals |

7.7.1 DataGrid

The DataGrid control takes data binding a step further by allowing more than one property of the
bound item to be displayed. This section's example shows you how to control the binding of data
columns to the grid, as well as how to customize the look and feel of the DataGrid using style.

By default, the DataGrid automatically binds all columns of the data source in the order that comes
from the database. Sometimes this is not the behavior you would want. To fully control what columns
bind and in which order you want the binding to happen, switch off theaut ogener at ecol urms
attribute of the DataGrid, and provide the columns property as shown the following sample:

<asp: DataGrid i d=DataGi dl runat="server"
For eCol or =" Bl ack"
aut ogener at ecol unms=f al se>
<col ums>
<asp: boundcol um dat af i el d=Cat egoryl D readonl y=True/ >
<asp: boundcol utm dat af i el d=Cat egor yNane/ >
<asp: boundcol um dat afi el d=Descri ption/>
</ col ums>
<Sel ectedl tentStyl e backcol or="#ffcc99" font-bol d=True/ >
<Al ternatingltentStyl e BackCol or="Gai nsboro"/ >
<Footer Styl e BackCol or="Silver" ForeCol or="\Wite"/>
<ltentStyl e BackCol or="Wite"/>
<Header Styl e BackCol or =" Navy" Font- Bol d="True" ForeCol or="White"/>

</ asp: DataGri d>

Figure 7-9 shows the result of this example.

Figure 7-9. DataGrid data binding

D/ Category Description

1 Beverages Soft drinks, coffees, teas, beers, and ales

2 Condiments Sweel and savory sauces, relishes, spreads, and seasonings
3 Confections Desserts, candies, and sweet breads

4 Dairy Products Cheeses

5 Grains/Cereals Breads, crackers, pasta, and cereal

6 Meat/Poultry Prepared meats

7 Produce Diied fruit and bean curd

& Seafood Seaweed and fish

In addition to using asp: boundcol umm to bind a column of the DataGrid to a column of the data

source, you can also use asp: but t oncol unm to insert a column with buttons that generate
notifications. You can handle these notifications to perform predefined tasks such as selecting the item,
removing the item, and adding the item to the shopping basket. You can also have

asp: hyper|inkcol umm insert links to other pages in a column,asp: edi t conmandcol urm control

177

editing of the selected row of data, or asp: t enpl at ecol unm customize the display of your column of
data.

There are a number of styles that you use to control the visual formatting of your DataGrid control. The
HeaderStyle and FooterStyle, as the names imply, control the style for the header and the footer of the
DataGrid. The ltemStyle, AlternatingltemStyle, SelectedltemStyle, and EditltemStyle are used for each
type of items in the list. The PagerStyle controls the visual appearance and layout of the paging
interface.

The code-behind source file for binding of data to the DataGrid is similar to that of the previous
example. Basically, we bind the set of the DataSource property of the DataGrid to the DefaultView of
the Categories table and perform the binding with the DataBind method:

Dat aGri d1. Dat aSource = m_ds. Tabl es[" Cat egori es"] . Def aul t Vi ew;
Dat aGri d1. Dat aBi nd();

7.7.2 DataList

Unlike the DataGrid control, where the data binding is still in a tabular form, the DataL.ist control allows
to you lay out the list in any way through the use of HTML templates.

Within a Datalist tag, you can customize a number of templates. The templates that can be
customized include:

AlternatingltemTemplate
EdititemTemplate
FooterTemplate
HeaderTemplate
ltemTemplate
SelectedltemTemplate
SeparatorTemplate

Specific tags are used to set up the style for each type of items you want to display. Similar to the
previous list, you also have IltemStyle, SelectedIltemStyle, and so on.

In the following example, we only show you one template, the ltemTemplate, which is applied to all
items in the list. In this template, we use Web Form data-binding syntax to bind two properties of the
data item, the CategorylD and CategoryName fields. In this simple template, the CategoryID will
always be shown with Verdana font in size 10.

You can also control the flow of the Datal.ist by setting attributes such asr epeat col unms,
repeat di recti on (vertical, horizontal), orr epeat | ayout (flow, table):

<asp: Dat aLi st id=Datalistl runat="server"
repeat col utms=3
repeatdirecti on=Hori zont al >

<t enpl ate name="IteniTenpl ate" >

<%t Dat aBi nder. Eval (Cont ai ner. Dataltem "CategorylD') %
</ font>
<%t Dat aBi nder. Eval (Cont ai ner. Dataltem "CategoryNane") %
</tenpl at e>

</ asp: Dat aLi st >

The code behind the data binding is shown here:

178

.NET Framework Essentials

Dat aLi st 1. Dat aSource = m ds. Tabl es[" Cat egori es"]. Defaul t Vi ew,
Dat aLi st 1. Dat aBi nd() ;

Figure 7-10 shows the output of this DataList data-binding example.

Figure 7 -10. DatalList data binding with template

1 Beverages 2 Condiments 3 Confections
4 Dairy Products 5 Grains/Cereals 6 Meat/Poultry
7 Produce 8 Seafood

7.7.3 Repeater

The ASP.NET Repeater control is completely driven by an HTML template to repeatedly display each
of the data items bound to it. When the page renders, the Repeater control loops through all the
records in the data source and generates HTML to display the record according to the HTML template.
This is as free-form as you can get for data binding. You can have templates to generate bulleted lists,
numbered lists, comma-separated lists, and tabs.

There are only five templates in the Repeater control:

AlternatingltemTemplate
FooterTemplate
HeaderTemplate
ltemTemplate
SeparatorTemplate

We will use two of these templates to control the display of the item and its separator.

Again, we bind two fields of each item to the template. The end result is a commaseparated list of
URLSs that link another Web Form to display more detailed information about the clicked category. As
you can see, we also use Web Form data-binding tags, <%# and %, to perform the binding. The
CategoryID fills the cat parameter of the query string to the DisplayCategory.aspx Web Form, and the
CategoryName is the display text for the anchor tag.

You could also replace the anchor tag and comma with graphical images to make your page more
visually appealing:

<asp: Repeater id=Repeaterl runat="server">

<l temTenpl at e>
<A HREF="htt p:// Your URL/ Di spl ayCat egory. aspx?cat =
<%t Dat aBi nder. Eval (Contai ner. Dataltem "CategorylD"') %"
><%t Dat aBi nder. Eval (Cont ai ner. Dataltem "CategoryNane") %
</ A>
</l tenTenpl at e>
<Separ at or Tenpl at e>, </ Separ at or Tenpl at e>

</ asp: Repeat er >

179

Figure 7-11 shows the result of using the data repeater to bind data.

Figure 7-11. Data binding using repeater and template
Beverages , Condiments , Confections | Dairy Products , Grains/Cereals ,
Meat/Poultry , Produce , Seafood

»

As with the other controls, the Repeater needs to be bound to a data source:

Repeat er 1. Dat aSource = m_ds. Tabl es[" Cat egori es"] . Def aul t Vi ew;
Repeaterl. DataBi nd();

As you can see, using a template to bind data to these list-bound controls can be very simple, yet
powerful. However, you should be aware of how the generated HTML will look. You should not have

complicated, bloated templates that will result in unappealing, large files. In web application
development, the page size is directly proportional to the response time the customer is experiencing.

7.8 State Management and Scalability

ASP.NET overcomes all major limitations of ASP when it comes to managing session states. As you
are aware from ASP development, a session state is nothing but a named variable that is cached at
the server for the duration of the web user's session. As the user navigates through the web
application, the session state retains its value as long as the session is not expired.

ASP Session state management can be summarized as follows:

The session starts, and the web application assigns a unique key to the user.

This key is stored in an HTTP cookie. Along each subsequent request, the client browser
sends the unique key back to the server.

The server looks up the states stored for this particular key and processes the request
accordingly.

While this has worked fine for all these years, we've found out that there were a number of limitations
to live with or work around. The biggest limitation is that the session state is process dependent, which
is impossible to implement in a web farm environment without custom session management.

7.8.1 ASP.NET Session-State Management

ASP.NET improves upon ASP session-state management by moving to an out-of-process model. By

having all web servers in the farm pointing to a common server that hosts the out-of-process state
manager, the web client can be redirected around the farm without losing the session states.

By using an out-of-process model, we no longer have the problem of losing session states when the
IS process is cycled. This means that if the web server application crashed for whatever reason and
restarted within the session time-out duration, the web clients could still have all their session states
intact. Of course, if the out-of-process state manager crashed, that is a whole different issue. This
leads to the next improvement of ASP.NET—the ability to persist session state to a database.

The idea of persisting session state to a database is not new. Many of us have implemented this as
the workaround for dealing with web farm configuration. However, ASP.NET makes it easier.

Similar to all other configurations in ASP.NET, session management is done through the use of the
web.config files. There are two levels of configuration: machine and application. Machine-level
configuration associates with the machine.config file stored in WinNT\Microsoft. NET\
Framework\<version>\CONFIGmachine.config,while the applicationdevel configuration uses the
web.config file in the application root directory. The application-level configuration overrides the
machine Jevel configuration.

18C

.NET Framework Essentials

The following code is a portion of the web.config file dealing with session-state management:

<configuration>
<system web>
<sessi onstate
nmode="1nproc"
cooki el ess="f al se"
ti meout="20" />
</ system web>
</ configuration>

Table 7-2 lists the properties of the SessionState class.

Table 7-2. Properties of the SessionState class

Property Description
Offindicates that session state is disabled; Inproc stores session data locally;
mode StateServer stores session state on a remote server; andSqlServer stores it on
a SQL Server.
Specifies whether to rely on the client acceptance of cookie. If this property is set
Cookieless totrue, ASP.NET inserts the unique key to the URL for navigation between

pages within the application instead of setting it in the client's cookie.

Specifies session timeout in minutes. This is a sliding window of time: it starts

Timeout . . ;
counting down for each request. The default is 20 minutes.

Specifies the server and port of the remote session-state server (not a SQL
connectionString Server). The format isHOST: PORT, as in192. 168. 254. 1: 42424, Use this
only whennode=St at eSer ver .

Represents a SQL Server connection string, such as user
sglConnectionString|i d=sa; passwor d=; dat abase=ASPSt at e; server=(| ocal) . Thisis
required when node=Sql Ser ver.

7.8.1.1 Out-of-process session-state management

When you set the session-state mode to run on a remote server (tode=St at eSer ver), you must
prepare the remote server to run the state management service automatically.

ASP.NET SDK includes an NT service call ASP State to be used for out-of-process session-state
management. Before setting your web.config files to use the out-of-process mode, you will have to
start the ASP State service by going to the NT Services Management Console and start the service.
You might want to change the startup type toaut onat i ¢ so that this service will start automatically at
subsequent reboots.

7.8.1.2 SQL Server session-state management

To start using this mode, the SQL Server machine has to be prepared. ASP.NET SDK includes a SQL
script to create the ASP State database, which is where all session states are stored. Find this SQL
script (InstallSqlState.sql) at %SystemRoot% \Microsoft. NET\Framework\ BUILDNUMBER\. To apply
the script to your SQL Server, use the SQL Server command-line tool osqgl.exe or SQL Query Analyzer.
We use the latter because it allows us to inspect the script to get a better understanding of how this
mode of session management is implemented. You will have to stop and restart SQL Server because
the script alters the nast er to run the ASPSt at e_St ar t up helper procedure at SQL startup time.

7.8.1.3 Cookieless session-state management

181

In ASP devel opment, it is a usual practice to impose the requirement that the clients' web browsers be
set up to accept cookies so that we can use session state the way it is meant to be used. However,
when this requirement is not in place, especially for business-to-consumer (B2C) kinds of applications,

the developers have to package the session ID along with the URL as a variable in the query string or
as a form field and manage the session states manually.

With ASP.NET, as you can see from thesessi onst at e section of the configuration file, all you do is
flip the setting of cooki el ess tot r ue, and everything is automatically done for you. Session state
can be used as if nothing has changed.

7.8.2 Performance versus Scalability and Reliability

As we've said, ASP.NET introduces an out-of-process model of session-state management, which
enables more scalable solutions, but not without a cost. Out-of-process communication performs much
worse than in -process communication, not to mention persisting the session states to a database. You
should weigh the benefits of each of the different mode of state managements to find the one that is
most suitable for your application. Table 7-3 summarizes the different modes and their trade-offs.

Table 7-3. Session-state management communication modes

Mode Description

In- This mode gives you the best performance. It is not reliable because it is memory based. It
process |is not scalable because this mode is process based.

The reliable factor is still in question because this mode still is memory based. However,
Outof- |because a separate process manages the session state, it is more reliable than the in-
process |process mode. Because of the out-of process communication overhead, it is much slower
than in-process mode. It is scalable for uses in web farms.

SQL This mode gives you the highest level of reliability at the cost of performance. It is scalable
Server |[for uses in web farms.

7.9 Summary

Throughout this chapter, we've introduced you to ASP.NET and the benefits that it brings to web
application development. These benefits include a new and extended web page life cycle that involves
events driven from the client browsers, server controls that manage their own states, the ability to
have separation of user interface and the code behind, the replacement of late -bound scripting
languages with strong-typed compiled languages, and the new and improved session-state
management that improves scalability.

If you are trying to embrace the web paradigm by using ASP.NET for your web application, along with
Web Services for integration between sites, you are right on target. However, not all applications are
suitable to be on the Web. There is a huge market of standard applications where the development is
done in traditional VB, C, C++, Java, and so on, and there is no need for it to be web based. In the
next chapter, we cover Windows Forms, which are supposed to map to traditional Windows
applications.

182

.NET Framework Essentials

Chapter 8. Windows Forms

If the goal of Microsoft .NET is to embrace the Web, what will happen to conventional Windows
applications? As it turns out, the .NET Framework not only benefits the development of web
applications, but also improves the way standard Windows applications are built. In this chapter, we
provide you with an understanding of what Windows Forms are, how to use Windows Forms .NET
classes to create Windows Forms-based applications, and how you can still "embrace the Web" while
creating Windows applications.

8.1 Introducing Windows Forms

If you have developed Windows applications since the early 1990s, chances are that you have seen
and used raw Windows APIs such as RegisterClass, CreateWindow, ShowWindow, GetMessage,
TranslateMessage, and DispatchMessage. You certainly had a WinMain entry point in your application.
Inside this function, you registered your application with Windows, created and showed the window,
and handled messages from the system. Every Windows application has to have a message loop that
collects Windows messages and dispatches them to the message-handler function that you've
registered through RegisterClass function. As the developers, much of your job is handling Windows
messages, such as WM_CREATE, WM_SIZE, or WM_CLOSE, that you create and pump into the
system with PostMessage or SendMessage.

Classic Windows development is tedious and error-prone. The result is that application frameworks
were built as an abstraction on top of all these Windows APIs. Frameworks such as the Microsoft
Foundation Class Library (MFC) and Active Template Library (ATL) were created to help Windows
application developers focus more on the task of solving business problems than on how to handle
certain Windows messages. These frameworks provide the plumbing, or the template, of a Windows
application. The developer's responsibility is to deal with business logic.

While it is much easier to develop Windows applications using these frameworks, it is again
sometimes necessary to go down to the Windows API level when the Framework does not give you
the controls you need. This situation causes inconsistency in the code. Moreover, there exist
numerous frameworks similar to MFC and ATL, such as the Object Windows Library (OWL) from
Borland, zApp from Rogue Wave, Windows add -on scripts for Python such as the Win32 Extensions
or PythonWin GUI Extensions, Visual Basic, and other homegrown frameworks, causing developers
much grief when switching from one to another.

Windows Forms provides a unified programming model for standard Windows application
development. It is similar to the native Windows API with regard to level of abstraction; however, it is
much richer and more powerful. Instead of depending on functions like the native Windows API,
Windows Forms provides a hierarchy of classes. Instead of calling CreateWindow for any type of user -
interface widgets, you create the particular type of user-interface control using the appropriate class.
You might think that MFC and other frameworks already provide hierarchy of classes. What other
benefits can Windows Forms bring that make it stand out from the crowd? The answer is the

language-independent aspect of this new framework. Any .NET language can use this collection of
classes that make up the Windows Forms object model.

If you've developed Windows applications in C++ and Visual Basic, you might think that it would be
nice to have the power of C++ to work in an integrated development environment like that of VB. It is

now possible with Visual Studio.NET and Windows Forms. Windows Forms brings a VB -like integrated
development environment to C#, Managed C++, and other languages.

In current Windows application development, if you use COM, DCOM, or ActiveX components,
deployment of your application requires extensive configuration. You would probably at least use the
regsvr32 utility to register and unregister components from the Windows Registry on the client
machine. All these setup-related deployment tasks are eliminated by Microsoft .NET—by Windows
Forms in particular. Now, all you have to do to install an application is copy the executable onto the
client machine.

183

Because Windows Forms is part of the Microsoft .NET grand scheme, it fully supports and integrates
with Web Services, ADO.NET, and the .NET clas ses. You can have Windows Forms as the frontend
to your web application by using .NET classes such as HttpWebRequest and HttpWebResponse.
These classes allow your Windows Forms application to communicate with web servers. Remember
that Windows Forms applications are not always standalone applications.

8.2 The System.Windows.Forms Namespace

In this section, we describe the architecture of Windows Forms and introduce the classes that make
up the Windows Forms namespace.

Windows Forms architecture is rather simple. It takes the form of controls and containers. This is
similar to Java JFC model where container types of classes are Panel, Window, JComponent, and so
on, and control types of classes are Button, Checkbox, Label, and so on. Most user-interface clas ses
in the Windows.Forms namespace derive from the Control class. In a sense, everything that you see
in a Windows Forms application is a control. If a control can contain other controls, it is a container.
The application user interface consists of a form object acting as the main container, as well as the
controls and other containers that reside on the form.

Similar to the native Windows API common functions, the System.Windows.Forms namespace
provides a common set of classes you can use and derive from to build Windows Forms applications.

The classes and interfaces in this namespace allow you to construct and render the user-interface
elements on a Windows Form.

As we have seen from the last chapter, the System.Web.Ul namespace provides the classes for
building web applications. Similarly, the System. Windows.Forms namespace provides the classes for
building standard applications. The System.Windows.Forms namespace is analogous to the
System.Web.Ul namespace, as described in the previous chapterl

M The similarity between these namespaces might even suggest a code merge so that the same code could produce both Windows and
Web forms. At the tme of this writing, there is no mention of this consolidation.

Similar to the Control and Page classes in the System.Web.Ul nhamespace, Control and Form are the
two most important classes in the System.Windows.Forms namespace.

8.2.1 Control Class

Control is the base class of all Ul controls in Windows Forms applications. It provides common

properties for all controls, as well as common user-interface control behaviors, such as accepting user
input through the keyboard or mouse and raising appropriate events.

Table 8 -1 shows the list of some representative properties, methods, and events that you would most
likely encounter. For the complete list, check out the Microsoft .NET SDK.

Table 8-1. Common Control properties, methods, and events

Properties Description
These properties allow for constructing hierarchy of controls. The Controls property

Controls lists all child controls, while the Parent property points to th e parent of the current
control.

Parent

Enabled |These properties control the visual states of the control.

Focused

Visible

Left |These properties control the location and size of the control.

184

.NET Framework Essentials

Top

Right

Bottom

Width

Height

Size

Methods Description
Show These methods manipulate the control's visual state.
Hide '

Focus

Select

These methods control when and what portion of the screen needs repainting. The
Refresh method immediately forces the control to redraw itself and all of its children.
The Invalidate and Update methods selectively control the portion of the screen that
needs to be redrawn.

Refresh

Invalidate
Update

If you develop your own controls, override these methods to intercept the Windows
ProcessCmdKey|messages. This is similar to how Windows developers handled Windows messages
when they developed Win32 applications using the native Win32 API.

WndProc

Events Description
To handle default events from the controls, you will most likely override the

Click protected virtual methods provided by the Control class. These mouse-event virtual
methods can be overriden to provide custom handling.

MouseDown '

MouseUp '

MouseMove

MouseWheel

KeyDown Similgr to the mouse events, these keyboard-event virtual methods can also be
overriden.

KeyUp '

KeyPress

The Control class also provides behaviors, such as data binding, context menu, drag and drop,
anchoring and docking, and properties, such as font, color, background, cursor, and so on.

8.2.2Form Class

A form in Windows Forms is similar in concept to a page in Web Forms. It is a container type of control
that hosts other Ul controls. You manipulate the properties of the Form object to control the
appearance, size, and color of the displayed form. A Windows Form is basically a representation of
any window displayed in your application.

A standard form contains a titlebar, which contains an icon, title text, and control box for the Minimize,
Maximize, and Close buttons (seeFigure 8-1). Most of the time, a form also contains a menu right
under the titlebar. The working area of the form is where child controls are rendered. A border around
the whole form shows you the boundary of the form and allows for resizing of the form. Sometimes,
the form also contains scrollbars so that it can display more controls or larger controls than the size of
the working area of the form.

Figure8-1. An empty application

185

(lose buttan

Jron Title fext Memy Titlebar Mlmf:wm:
=101 %]
Sin [Wirdos
-]
Corment ‘
rl
|
Scrall bar

You can manipulate the form's standard visual elements with properties such as Icon, Text,
ControlBox, MinimizeBox, MaximizeBox, and FormBorderStyle. For example, if you want the title text
of the form to readHel | o Wor | d, you include the assignment f or mNane. Text ="Hel oWor |l d"; .
To have a form without the control box in the top right corner, set the ControlBox property tof al se. If
you want to selectively hide the Maximize or the Minimize button in the control box, set the
MaximizeBox or MinimizeBox property tof al se.

You can assign a menu to your form by setting the Menu property of the form with an instance of the
MainMenu class. We will show you how to do this in Section 8.3 of this chapter.

Similar to Submit and Reset buttons in a web page's form, a form will frequently include OK and
Cancel buttons to submit or to reset the form. In Windows Forms, you can assign any button to the
AcceptButton property of the form to make it the default button when the user hits the Enter key.
Similarly, you can set up the CancelButton property to handle the Escape key.

The Form class supports anumber of methods itself, along with the methods it inherits from the base
class. Activate, Show, Hide, ShowDialog, and Close are a few of the imperative methods used in any
form to control the window-management functionality of a form. As we get into theSection 8.3 later
in this chapter, you will see these methods in action.

8.2.2.1 Extending existing controls

Because Windows Forms API is object oriented, extending controls is as easy as deriving from the

control you want to extend and adding methods, properties, and events or overriding the default
behavior of the control:

cl ass MyCustonmlext Box : Text Box

{

/1l custom zation goes here
}
8.2.2.2 Creating composite controls

Composite controls are controls that contain other controls. By definition, it ought to be derived from
the ContainerControl class; however, the Windows Forms object model provides the UserControl class,

which is a better starting point for your custom composite controls (UserControl actually derives from
ContainerControl):

class MyCust omConposite : UserControl

/| Conposite controls go here

}

186

.NET Framework Essentials

While deriving from UserControl class to create your custom composite controls is not a hard task,
Microsoft Misual Studio.NET is an excellent tool for making this task even easier. It truly is an effort to
raise the bar on RAD tools. Developers' productivity benefits greatly from support tools like these.

8.2.3 Application Class

The Application class provides static methods to start, stop, or filter Windows messages in an

application. All Windows Forms applications contain a reference to this Application class. More
specifically, all Windows Forms applications start with something like the following:

System W ndows. For nms. Appl i cati on. Run(new MyForm());

While this class provides other methods and properties beside the Run method, this method is really
the only essential one. The rest of the methods (listed in the rest of this section) are low-level and not
frequently used.

The Run method starts the application thread's message loop. This method has two signatures. The
first signature involves no parameters, which are normally used for non-GUI applications.

Syst em W ndows. For ns. Application. Run();

The second sig nature takes a form as a parameter, as you can see from the first example. The form
My For mis the entry point to a GUI Windows Forms application.

Table 8-2 summarizes the Application class.

Table 8-2. Common Application properties and methods

Properties Description

This is the common application registry key under which common data is

CommonAppDataRegistry stored and shared among all users.

StartupPath This property is the path in which the executable started.
UserAppDataRegistry This is the registry key where roaming user's data are kept.
Methods Description

Run This method starts the application whether it is GUkFbased or not.

This method stops the application by sending the stop message to all

Exit . : L
message loops in all threads in the application.

ExitThread Similarly, this method stops the current message loop in the current thread.

You can also add a message filter to the application to intercept and filter

AddMessagefilter Windows messages.2

RemoveMessageFilter You can also remove the message filter.

This method processes all Windows messages currently in the message

DoEvents
queue.

B The only parameter you need to provide to this method is an object that implements the IMessageFilter interface. Currently, the only
method in this interface is PreFilterMessage, which you have to override to intercept and filter any message. If your PreFilterMessage
method returns t r ue, the Windows message is consumed and not dispatched to its destination. You can let the message pass through

by returning f al se in this method.

Figure 8-2 illustrates the hierarchy of Windows Controls in the System.Windows.Forms namespace.
These controls are placed on the form to create Windows Forms applications and on a UserControl
container to create Ul Controls (similar to current ActiveX controls). This figure does not include the
Application class.

187

Figure 8-2. System.Windows.Forms Windows Controls class hierarchy
| System Object |
LISmMurdmlW[lpd’
L[m.tuwunmmndelmrwm-]] $F,mm,,d,“jm

{mnmﬂ -Lﬂufnﬁrfn'fm'l.lmnﬁp'a |

i] Golordlinkg | H DotaliridBool(alimn |
: HhikDigog | | DotwtridieatbosColumn |
5 ooy | L{ Detatridiabistyk |

8.3 Windows Forms Development

The Form class in the System.Windows.Forms namespace represents a standard window that
contains Windows controls. In this section, we walk you through the development of a Windows Forms
application and introduce you to the rich set of Windows controls that can be used on a Windows Form.

188

.NET Framework Essentials

8.3.1 Windows Forms Application

All Windows Forms applications start out with a derived class from the System.Windows.Forms.Form
class. A simple Windows Forms application looks like the following:

public class MyForm: System W ndows. For ms. For m

public MyForn()

{
Text = "Hello World";
}
public static void Main()
{
System W ndows. For ms. Appl i cati on. Run(new MyForm());
}

}

Basically, you define a class MyForm, which derives from the System.Windows.Forms.Form class. In
the constructor of MyForm class, you set the Text property of the Form toHel | o VWWor | d. That's all
there is to it. The static Main function is the entry point to all applications. In the entry-point function,
you call the static method Appl i cati on. Run, which starts the message loop for the application.

Because you also pass a form-derived object MyForm to the Run method, what we have is a Windows
Forms application.

You can also include references to the namespaces to avoid typing the fully qualified name of classes
such as System.Windows.Forms.Form or System.Windows.Forms.Application. To do this, include the

following line at the beginning of the source file, and omit the System.Windows.Forms prefix to your
class names:

usi ng System W ndows. For ns;

To build the previously listed application, we use the command-line C# compiler. Notice that the target
type is an executable, not a DLL, as when we compiled our web service PubsWS (type this command
all on one line):

csc /t:w nexe
[r:systemdl |
[r:System W ndows. Forns. dl |
MyForm cs

The standard Form object that is shown on the screen doesn't do much; however, it demonstrates the
simplicity of creating a Windows Forms application. You can exit the application by clicking on the

Close button of the Control Box on the titlebar of the form. When you do this, a quit message is
injected into the message loop, and, by default, it is processed and the Application ins tant will stop.

8.3.2 Windows Controls

Windows Forms applications can be much more involved than the application shown earlier; however,
the underlying concepts are the same. In this section, we introduce you to the rich set of Windows
controls that you can use on your form, as well as data binding to some of these controls. We also
show how event handling works in Windows Forms applications.

8.3.2.1 Adding controls onto the form

First of all, we create and add the control to the Controls collection of the form:

Button btnl = new Button();

189

btnl. Text = "Click Me";
this.Controls. Add(btnl);

Adding other types of controls follows the same convention. There are three basic steps:

1. Create the control.
2. Setup the control's properties.
3. Add the control to the Controls collection of the Form object.

8.3.2.2 Binding the event handler

This is all swell, but what does the application do when you click on the button? Nothing. We have not
yet bound the event handler to the button's event. To do that, we first have to create the event handler.
An event handler is nothing more than a normal function, but it always has two parameters: object and
EventArgs. The object parameter is filled with event originator. For example, if you clicked on a button
on a form, causing the o nclick event to fire, the object parameter to the event handler will point to the
button object that you actually clicked on. The EventArgs object represents the event itself. Using the
same example, the EventArgs parameter will be the onclick event with event arguments such as the
coordinates of the mouse, which button got clicked and so on. The following code excerpt shows the
event handler for the onclick event on a button:

voi d btnl onclick(Object sender, EventArgs e)

{
Text = "Sender: " + sender.ToString() + " - Event: " + e.ToString();

}

That event handler changes the title of the form each time the button is clicked. Now that we have
created the event handler, we assign it to the event click of the button:

btnl.Cd ick += new EventHandl er(btnl_onclick);

That line of code constructs an EventHandler object from the method we passed in and passes the
newly created object to the Click event of the button. We basically register a callback function when

Click happens. (You may want to review Chapter 2 where we discuss delegates.) Here is the
complete example:

usi ng System
usi ng System W ndows. For irs;

public class MyForm: Form

{
voi d btnl onclick(object sender, Event Args e)
{
Text = "Sender: " + sender.ToString() +
" - Bvent: " + e.ToString();
}
public MyForm()
{
Text = "Hello World";
Button btnl = new Button();
btnl. Text = "Click M";
this.Control s. Add(bt nl);
btnl. Click += new Event Handl er (btnl_oncli ck);
}

19C

.NET Framework Essentials

public static void Main()
{

}
}

Application. Run(new MyForn());

When the user clicks on the button, because we've already registered for the click event, our event
handler is called. It is possible to add more than one event handler to a single event by repeating the

assignment line for other event handlers. All handlers that are registered to handle the event are
executed in the order in which they're registered.

You can also easily remove the event handler. Replace += with - =:
btnl.Click -= new Event Handl er (bt nl_oncli ck);

Binding event handlers to events at runtime provides the developer with unlimited flexibility. You can
programmatically bind different event handlers to a control based on the state of the application. For
example, a button click can be bound to the update function when the data row exists or to theinsert
function when it's a new row.

As you can see, the process of binding event handlers to events is the same in Windows Form s as in
Web Forms. This consistency of programming model is possibly due the same substrate, the CLR in
both environments.

8.3.2.3 Data binding

There are two kinds of data binding in Windows Forms. The first involves simple Windows controls
such as Label, TextBox, and Button. These simple controls can be bound to a single value only. The

second involves Windows controls that can manage lists of data such as ListBox, ComboBox, and
DataGrid. These list controls are bound to lists of values.

Let's look at the first type of data binding. In the following example, we bind text boxes to fields in a
table from the Pubs database. We extend the simple Hello, World Windows Form application to
include data access and data binding.

The first thing is to obtain the data from the database. (It's a good time to review ADO.NET in Chapter
5 if you did not read the book in the order presented.) Let's take a look atExample 8-1.

Example 8-1. The C# source file

usi ng System

usi ng System W ndows. For ns;
usi ng System Dat a;

usi ng System Dat a. O eDb;

public class MyForm: Form

{
public static void Main()
{
Application. Run(new MyForm());
}

private TextBox m_txtFirstNane, mtxtLastName, m_txtPhone;
private Button m btnPrev, m btnNext;

private Bi ndi ngManager Base m | m

private DataSet mds;

public MyForm()

191

192

Text = "Sinple Controls Data Binding";

/'l Create the first name text box
m t xt Fi rst Name = new Text Box();
m_t xt Fi r st Nane. Dock = DockStyl e. Top;

/'l Create the | ast name text box
m t xt Last Name = new Text Box();
m t xt Last Narme. Dock = DockStyl e. Top;

/'l Create the phone text box
m_t xt Phone = new Text Box();
m_t xt Phone. Dock = DockStyl e. Top;

/1 Add both first name and | ast nane to the panell
Panel panell = new Panel ();

panel 1. Dock = DockStyle. Left;

panel 1. Control s. Add(m_t xt Fi r st Nane) ;

panel 1. Control s. Add(m_t xt Last Nane) ;

panel 1. Control s. Add(m_t xt Phone) ;

/1 Add panell to the left of the form

this. Control s. Add(panel 1);

/'l Create the up button and bind click to event handler
m bt nPrev = new Button();

m bt nPrev. Text "Up";

m_bt nPrev. Dock DockStyl e. Top;

m btnPrev. Cl i ck += new Event Handl er (bt nPrev_oncl i ck);

/'l Create the down button and bind click to event handl er
m bt nNext = new Button();

m bt nNext . Text = " Down";

m_bt nNext . Dock = DockStyl e. Top;

m bt nNext. Cli ck += new Event Handl er (bt nNext _oncl i ck);

/1 Add both the up and down buttons to panel 2
Panel panel2 = new Panel ();

panel 2. Dock = DockStyl e. Ri ght;

panel 2. Wdth = 50;

panel 2. Control s. Add(m bt nNext) ;

panel 2. Control s. Add(m_bt nPrev);

/1 Add panel2 to the right of the form

this. Controls. Add(panel 2);

/1 Fill the dataset with the authors table from Pubs dat abase
m ds = new DataSet();
string oSQL = "sel ect au_fnanme, au_l name, phone from authors";

string oConnStr =

"provider=sqgl ol edb; server=(l ocal) ; dat abase=pubs; ui d=sa; pwd=; ";
O eDbDat aAdapt er oDA = new O eDbDat aAdapt er (0SQ., oConnStr);
oDA.Fill(mds, "tbl");

/1 Bind the Text property of |last name text box to field au_l nane
m_t xt Last Nane. Dat aBi ndi ngs. Add(" Text",

m ds. Tabl es["tbl "],

"au_l name");

/1 Bind the Text property of first name text box to field au_fnane
m_t xt Fi r st Nane. Dat aBi ndi ngs. Add(" Text ",
m ds. Tabl es["tbl "],

.NET Framework Essentials

"au_fname");

/1 Bind the Text property of phone text box to field phone
m_t xt Phone. Dat aBi ndi ngs. Add(" Text ",

m ds. Tabl es["tbl "],

"phone");

/1 Obtain the |list manager fromthe | ast nane binding
m | m = m_txtLast Nanme. Dat aBi ndi ngs[0] . Bi ndi ngManager Base;
}

protected void btnNext_onclick(object sender, EventArgs e)

{
/'l NMove the position of the |ist manager
m | mPosition += 1;

protected void btnPrev_onclick(object sender, EventArgs e)

{

/1 Move the position of the |list manager
m | mPosition -= 1;
}
}

Because all Ul controls derive from the Control class, they inherit the DataBindings property (which is

of type ControlsBindingCollection). This DataBindings property contains a collection of Binding objects
that is used to bind any property of the control to a field in the list data sour ce.

To bind a simple control to a record in the data source, we can add a Binding object to the
DataBindings collection for the control using the following syntax:

cont r ol Nane. Dat aBi ndi ngs. Add(" Property", datasource, "columname");

where cont r ol Nane is name of the simple control that you want to perform the data binding. The
Proper t y item specifies the property of the simple control you want to be bound to the data in
column col urmnane.

Example 8-1 shows you how to bind the Text property of the TextBox controlm t xt Last Nane to
the au_| name column of Authors table of the DataSetm ds, as well asm t xt Fi r st Nane and
m t xt Phoneto columns au_ f nanme andphone.

To traverse the list in the data source, use the BindingManagerBase object. Each of the Binding
objects has a reference to a BindingManagerBase object. The following excerpt of code shows you
how to get to the binding manager for the data source bound to the last name text box. Because the
same data source is bound to the first name and the phone number, there is no need to get a separate
binding manager to traverse the data.

/1 Obtain the Iist nanager fromthe |ast name binding
m | m = m_txtLast Nanme. Dat aBi ndi ngs[0]. Bi ndi ngManager Base;

To demonstrate the use of BindingManagerBase to traverse the data source, we add two buttons onto
the form, bt nNext and bt nPr ev. We then bind the two buttons' click events to bt nNext oncl i ck
and bt nPrev_oncl i ck, respectively:

protected void btnNext_onclick(object sender, EventArgs e)

{

m | m Position += 1;

}

193

protected void btnPrev_onclick(object sender, EventArgs e)

{

m | mPosition -= 1;

}

As you use BindingManagerBase to manage the position of the list—in this case, the current record in

the Authors table—the TextBox control will be updated with new FirstName value. Figure 8-3
illustrates the user interface for the simple controls data-binding example.

Figure 8-3. Simple controls data binding

-15]x]
Johnson Up
['ahite [Diowm
|4E|EI 456-7223

Let's now take a look at the other type of data binding. In this example, we will bind the whole authors
table to a DataGrid:

usi ng System

usi ng System W ndows. For ns;
usi ng System Dat a;

usi ng System Dat a. O eDb;

public class MyForm: Form

{
public static void Main()
{
Application. Run(new MyForm());
}

private Button m btnl;
private TextBox mtxtl1;
private DataGrid mdataGridil;

public MyForm()

{
Text = "Hello World";
mtxtl = new TextBox();
mtxtl. Text = "select * from authors";
m t xt 1. Dock = DockStyl e. Top;
this.Controls. Add(m txt1);
m btnl = new Button();
m btnl. Text = "Retrieve Data";
m bt nl. Dock = DockStyl e. Top;
m btnl. Click += new Event Handl er (bt n1_oncli ck);
this.Controls. Add(m_btnl);
m dataGridl = new DataGrid();
m dat aGri d1. Dock = DockStyle. Fill;
this. Controls. Add(m dataG i dl);
this. AcceptButton = m btnil;
}

194

.NET Framework Essentials

protected void btnl_onclick(object sender, EventArgs e)

{
try {
Dat aSet ds = new DataSet();
string oConnStr =
"provi der =sql ol edb; server=(1 ocal) ; dat abase=pubs; ui d=sa; pwd=; ";
O eDbDat aAdapt er oDA =
new O eDbDat aAdapter (m txt1l. Text, oConnStr);
oDA. Fill (ds, "tbl");
/* You can specify the table directly like this
* m dat aGri d1. Dat aSource = ds. Tables["tbl"];
*
* or specify the datasource and the table separately
* like this:
*/
m dat aGri d1. Dat aSource = ds;
m dat aGri d1. Dat aMenber = "tbl";
} catch(Exception ex) {
Text = "An error has occured. " + ex.ToString();
}
}

}

Data binding for controls of type List in Windows Forms is similar to that of Web Forms. However, you
don't have to call the DataBind method of the control. All you have to do is set the DataSource
property of the Ul control to the data source. The data source then has to implement the IList
interfaces. As it turns out, the following can be used as data source: DataTable, DataView, DataSet,
DataSetView, and single-dimension array.

The process for DataGrid data binding is also simple: just set the DataSource property of the DataGrid

object to the data source, and you're all set. We name the tablet bl when we add it to DataSet with
the data adapter's Fill() method; therefore, the following line of code just indexes into the collection of
tables in the DataSet using the table name:

m dat aGri d1. Dat aSource = ds. Tables["tbl"];

If the data source contains more than one table, you will also have to set the DataMember property of
the control to the name of the table you want the control to bind to:

m dat aGri d1. Dat aSour ce
m dat aGri d1. Dat aMenber

ds;
"tbl";

The results of binding the two tables to the DataGrid are shown in Figure 8 4 and Figure 8-5.

Figure 8-4. Binding the authors table to the DataGrid

195

[Bherowats ol X

sedect ™ from sulhos

[

a_kd au_lname o_fname phone ackdess [<.1] sk P conhact =
TEENTE wWhis dohwrn ABAETITE HZ Egge Menka Fak CA 2 [k w
Z1EETS Giwen Hajerw NFW|STA] IEEXN 51 F Dabland (o] 4ETB i
ZIETIEE Casan Cheigd 4155487723 523 0awin L Berbeley (= 34705 i
LR Oleay Mk A0 M5 2 Ceveland San Jode o] =1 ”
MBI Shaight [aarn 41580-21% 5420Colege Dusbland s L] o
-ERTE Smih Heandes HNIAFMES 10 Hissieippi Lawreros 43 B4 r
AFSETO Pennet Abearam A5G G223Deens Derkelsy Ca WS F
A27TEe Da Ann ASEEFIZ H10Bnds Falo Ao A an o
ATEIT-EHI Gingierby Bust TO7 TS5 FO Bow T2 Covmle =] FAm o I
ABE-Z3ITEE Lachiley Chatiers ANSEA5EN 15 Pisadw SanFiancitcn CA 94130 I
TRNTIR4E Giewrs Horwegle B1S3TIT23 22 Craptai H Hashla TH s I
ESESLTETE BloicheiHal: Regiid SOE FASE40Z 5% Hikdake Bl Coresle aF] i

EF2 A2 rokusneso Ak ST S A Sk O] ‘wiaiwd Crock G4 S4bsh i
24810 ded Castilin s 1S E M 26 Niam FL e Aor M &0 it

TERE G5 DeFunce Hicre FIASAT-HIEE 3 Baldeg FL Gy L} L] o =

Figure 8-5. Binding the titles table to the DataGrid

(Wiwoworid aloix|
ki~ lram itz
]] [™] pub_xd e e byl i st) putsdg .
¥ R Tha Ausp 3 hemnas; 153 pEk] S0 n A furi oo o LI
A1 Cosking wih besnex; 13 k- 5000 n W Haskgil biniz 0 451 56
BT i Can o bemnexy [reg 15 j LIk kil W T bnbact pen 530K 51
]l Shaght Tek bemnes: 133 HE 5000 n 255 Arnoisled an &4 25435
WL Clcon Veley mod ook {r:ord HE 1] 12 oo Faremim ecp 550150
W3 Tha Giowmal mod_cock {r:ord i35 15000 il P Tosditianal 1 5081
O Tha Prpchole UMDEODED (77 redl] [radl)] [red] (] 2REan
FLolEE Bot b it Uam populer_come 1333 ms] 16 E7ED A qurvey of 2o 0304 5
FLEEE8 Cacwt of Sd popule_come 1333 .] 800 0 4355 Huchrabng e £921384
L350 Hui Ebpaita pocule_come 1339 il [rud) el [rad] Armechonad | 25200
FLI3M2 Corpuim Ph poxchdogy [E77 nea 000 o s Armest ot TVEL1330
FE2081 ktingmthm E pochalagy [T ik s 2 205 Casmhilly mom &'F515E1
FLIDE L wiheat F poxhalagy [T 7 1] o (L} Koy iwsireinn, | 0VEA1 51
FLIZE Prokorgend Da poshilegy (T3 s 2000 o T Wl g &L 0
FLImT Erickorad Sa pochadegy [T 35 S000 o 333 Frotacting pou &'521531 =

8.3.2.4 Arranging controls

After adding controls onto the form and setting the event handlings and data bindings, you a re fully
functional. However, for the visual aspect of your application, you might want to control the layout of

the controls on the form. You can do this by setting up physical locations of controls with respect to the
container to which the controls belong 2 or you can dock or anchor the controls inside the container.

Bl This is similar to VB programming. Controls initially have absolute positions on the form, but they can be programmatically moved and
resized while the application is running.

Docking of a control is very simple. You can dock your control to the top, left, right, or bottom of the
container. If you dock your control to the top or the bottom, the width of your control will span across
the whole container. On the same token, if you dock the control to the left or the right, its height will
span the height of the container. You can also set the Dock property to DockSt yl e. Fi | |, which will
adjust the control to fill the container.

The anchoring concept is a bit different. You can anchor your control inside your container by tying it
to one or more sides of the container. The distance between the container and the control remains
constant at the anchoring side.

You can also use a combination of these techniques by grouping controls into multiple panels and
then organizing these panels on the form. With docking and anchoring, there is no need to
programmatically calculate and reposition or resize controls on the form.

If you've ever done Java Swing development, you might notice that the current Microsoft .NET
Windows Forms framework is similar to JFC with respect to laying out controls; however, it is missing
the Layout Manager classes such as GridLayout and FlowLayout to help lay out controls in the
containers. We hope that in future releases of the .NET SDK, some sort of layout manager will be

196

.NET Framework Essentials

included. Currently, if you are writing your Windows Forms application using Visual Studio.NET, you
will have more than enough control over the layout of controls on your form.

8.3.3 Visual Inheritance

Visual inheritance was never before possible on the Windows platform using Microsoft technologies.
Prior to the release of Microsoft .NET (and we are only talking about VB development here),
developers used VB templates to reuse a form. This is basically a fancy name for copy-and-paste
programming. Each copy of a VB template can be modified to fit the current use. When the template
itself is modified, copies or derivatives of the template are not updated. You either have to redo each
using copy and paste or just leave them alone.

With the advent of Microsoft .NET, where everything is now object oriented, you can create derived
classes by inheritingany base class. Since a form in Windows Forms application is nothing more than
a derived class of the base Form class, you can actually derive from your form class to create other
form classes.

This is extremely good for something like a wizard-based application, where each of the forms looks
similar to the others. You can create the common look-and-feel form as your base class and then
create each of the wizard forms by deriving from this base class.

8.3.4 MDI Applications

There are two main styles of us er interfaces for Windows-based applications: Single Document
Interface (SDI) and Multiple Document Interface (MDI). For SDI applications, each instance of the
application can have only one document. If you would like more than one open document, you must
have multiple instances of the application running. MDI, on the other hand, allows multiple documents
to be open at one time in one instance of the application. Another good thing about MDI application is
that, depending of the type of document currently open, the main menu for the application changes to
reflect the operations that you can perform on the document.

While it is easy to implement both SDI and MDI applications using the Windows Forms architecture,
we only show you an example of MDI in this section.

MDI application architecture borrows the same pattern of Windows Forms architecture. Basically, you
have one form acting as the container form and other forms acting as child forms.

The Form class provides a number of properties and methods to help in the development of MDI
applications, including IsMdiContainer, IsMdiChild, MdiParent, MdiChildren, ActiveMdiChild, and
LayoutMdi().

The first thing we want to show you is the bare minimum main form for our MDI application:

usi ng System
usi ng System W ndows. For ims;

public class Mi Mai nForm : Form

{

publ i c Mli Mai nForm()

{
this. Text = "MDI App for Text and | nages";
/1 This is the MDl container
this.|lsMi Contai ner = true;

}

public static void Main(string[] args)

{

Appl i cation. Run(new Mli Mai nForn());

197

}
}

Believe it or not, this is basically all you have to do for the main form of the MDI application! For each
of the child forms that we will be spawning from this main form, we will set its MdiParent property to
point to this main form.

In the following code excerpt, we load a child form of the main form:

Forma = new Form();
a. Mdi Parent = this;
a. Show();

Formb = new Form();
b. Mdi Parent = this;
b. Show();

Again, all it takes to spawn a child form of the MDI application is a single property, MdiParent. In your

application, you will probably replace the type for forms a and b with your own form classes. (As
shown later in this chapter, we have ImageForm and TextForm.)

However, at this point the MDIlapplication is not really functional. MDI is interesting because the MDI
application contains one set of main menus and it is possible for child forms to merge their menus with
the MDI frame. We also show you how to incorporate menus into our main MDI form, and later in this
section, how the child form's menus are merged to this main menu.

The whole menu architecture in Windows Forms application revolves around two classes: MainMenu
and Menultem. MainMenu represents the complete menu for the whole form. A Menultem represents
one menu item; however, each menu item contains child menu items in the Menultems property.
Again, you start to see the pattern of controls and containers here too. For example, if we are to have
two top-level menus (e.g., File and Window), then basically, we have to set up the MainMenu object so
that it contains two menu items in its Menultems property. We can do so using the Add method of the
Menultems property to insert menu items dynamically into the collection. If we know ahead of time the
number of menu items, we can declaratively assign an array of menu items to this property.
Recursively, we can have the File or the Window menu items contain a number of sub-menu items in
their Menultems property the same way we set up the main menu.

Let's take a look at the source code:

usi ng System
usi ng System W ndows. For irs;

public class Mli Mai nForm: Form
{
/1 Menu ltens under File Menu
private Menultem muQOpen, muC ose, nmuExit;
[/ Menu |Itenms under the W ndow Menu
private Menultem muCascade, muTil eHorz, muTil eVert,
muSepar at or, muCl oseAl |, muLi st MDI ;
/] The File and W ndow Menus
private Menultem muFil e, muW ndow;,
/1 The Main Menu
private Mai nMenu mmuMai n;

public Mi Mai nFornm()

{
this. Text = "MDl App for Text and | nages”;

198

.NET Framework Essentials

/1 File Menu lItem

muFil e = new Menultem();
muFile. Text = "&File";

muFi | e. Mer geOrder = 0;

/1 W ndow Menu Item

muW ndow = new Menultem();
muW ndow. Mer geOr der = 2;
muW ndow. Text = "&W ndow"';

/1 Main Menu contains File and W ndow
muMai n = new Mai nMenu() ;
muMai n. Menul t ems. AddRange(

new Menulteni{ 2] {muFile, muW ndow});

/'l Assign the main nenu of the form
this. Menu = nmulMAai n;

/1 Menu Items under File menu
muQCpen = new Menultem();
muQOpen. Text = "Open";
muOpen. Cl i ck += new Event Handl er (t hi s. OpenHandl er) ;
muCl ose = new Menultem();
mucCl ose. Text = "Cl ose";
muCl ose. Cli ck += new Event Handl er (t hi s. Cl oseHandl er);
mMuExit = new Menultenm();
mMuExit. Text = "Exit";
muExi t. Click += new EventHandl er (this. Exi t Handl er) ;
mmuFi | e. Menul t ens. AddRange(
new Menul ten{ 3] {muOpen, muCl ose, mMuExit});

/1 Menu Itens under W ndow nenu

mmuCascade = new Menulten();

mucCascade. Text = "Cascade";

muCascade. Cl i ck += new Event Handl er (t hi s. CascadeHandl er) ;
muTi | eHorz = new Menulten();

muTi | eHorz. Text = "Tile Horizontal";

muTi | eHorz. Cli ck += new Event Handl er (thi s. Ti | eHor zHandl er);
muTi | eVert = new Menultenm();

muTil eVert. Text = "Tile Vertical";

muTil eVert. Click += new Event Handl er (this. Til eVert Handl er);
mmuSepar at or = new Menultem);

muSepar at or. Text = "-";

muCl oseAll = new Menulten();

muCl oseAl |l . Text = "Close A |l";

muCl oseAl | . Cli ck += new Event Handl er (t hi s. Cl oseAl | Handl er);
muli st MDI = new Menultem();

mmuli st MDI . Text = "W ndows. ..";

mmuli st MDI . Mdi Li st = true;

muW ndow. Menul t ens. AddRange(
new Menul teni 6] {muCascade, mmuTil eHorz, mmuTil eVert,
mmuSepar at or, mmuC oseAl |, mmulLi st Ml });

/1 This is the NMDI container
this.|sMli Container = true;

}
public static void Main(string[] args)

{
Appl i cation. Run(new Mli Mai nForn{));

199

(Note that this source-code listing is completed in the event handlers listing that follows.)

We first declare all the menu items that we would like to have, along with one MainMenu instance in
the class scope. In the main-application constructor, we then instantiate the menu items and set their
Text properties. For the two top-level menu items, we also set the MergeOrder property so that we can
control where the child forms will merge their menu to the main form menu. In this case, we've set up
the File menuto be of order0 and the Window menu to be of order 2. As you will see later, we will
have the child menu's MergeOrder setto 1 so that it is between the File and Window menus.

We then add both the File and the Window menus to the main menu's Menultems collection by using
the AddRange(') method:

muMai n. Menul t ens. AddRange(
new Menultenf 2] {muFile, muW ndow});

Note that at this time, the File and Window menus are still empty. We then assign mnuMain to the
MainMenu property of the Form object. At this point, we should be able to see the File and Window
menus on the main form; however, there is no drop-down yet.

Similar to how we create menu items and add them to the main menu's Menultems collection, we add
menu items into both the File and Window menu. However, there is one thing that is different here. We

also bind event handlers to the Click events of the menu items. Let's take one example, the Open
menu item:

muOpen = new Menulten();
muQOpen. Text = "Open";
muQOpen. Cl i ck += new Event Handl er(thi s. OpenHandl| er);

Note that the syntax for binding the event handler OpenHand!| er tothe event Cl i ck of the Menultem
class is similar to any other event binding that we've seen so far. Of course, we will have to provide
the function body in the MDI main class.

While we are talking about menus, another interesting piece of information is the mnuListMDI

Menultem at the end of the Window menu. We set the MdiList property of this Menultemto t r ue, as
shown in the following code fragment, so that it will autom atically show all the opened documents
inside the MDI application. See Figure 8 -6 for an example of how this feature shows up at runtime.

muli st MDI . Text = "W ndows. ..";
muli st MDI . Mdi Li st = true;

Figure 8-6. MDIList autogenerated menu entries
0]
Fla Image ‘Window

Cascade -
n = | =]
Tile: Horzontal

m Tile: Vertical o

Clase Al

BT | tMAGE: EWINNTIPraie Wind biog

v 2 IMAGE: E:\WINNTIRhododendron, bmp

The following code is for the event handlers that we've set up for various menu items in this main form
(this completes the MdiMainForm class listing):

protected void OpenHandl er (obj ect sender, EventArgs e)

{

200

.NET Framework Essentials

/I MessageBox. Show(" Open clicked");
OpenFi | eDi al og openFil eDl g = new OpenFil eDi al og();
i f (openFil eD g. ShowDi al og() == Dial ogResul t. OK)
{
try
{
String sFN = openFil eDl g. Fi | eNane;
String sExt = sFN. Substring(sFN. Last!lndexOf("."));
sExt = sExt. ToUpper();
/| MessageBox. Show(sFN + " " + sExt);
if(sExt == ".BMP" || sExt == ".JPG" || sExt == ".GF")
{
I mgeFor m i ngForm = new | nageForm();
i mgFor m Set | mageNane(sFN) ;
i ngForm Mli Parent = this;
i mgFor m Show();

}
else if(sExt == ".TXT" || sExt == ".VB" || sExt == ".CS")
{

Text Form t xt Form = new Text Forn();

t xt Form Set Text Fi | e(sFN);

t xt Form Mdi Parent = this;

t xt Form Show();

}

el se

{

MessageBox. Show("Fil e not supported.");

}
}
cat ch(Exception ex)
{

MessageBox. Show ("Error: " + ex.ToString());
}

}
}

protected void Cl oseHandl er (obj ect sender, EventArgs e)

{
if(this.ActiveMdiChild != null)

{
this.ActiveMli Child.Cl ose();

}
}

protected voi d ExitHandl er(object sender, EventArgs e)

{
}

protected void CascadeHandl er (obj ect sender, EventArgs e)

{
}

protected void Til eHor zHandl er (obj ect sender, EventArgs e)

{
}

protected void TileVertHandl er (obj ect sender, EventArgs e)

{

this.Close();

thi s. Layout Mdi (Mli Layout . Cascade) ;

this. Layout Mdi (Mdi Layout. Ti | eHori zontal);

201

this. Layout Mdi (Mdi Layout. Til eVertical);
}

protected void Cl oseAll Handl er (obj ect sender, EventArgs e)

{
int iLength = Mli Children. Length;
for(int i=0; i<iLength; i++)
{

}
}

Mdi Chi | dren[O] . Di spose();

The functionality of the OpenHandler event handler is simple. We basically open a common file dialog
box to allow the user to pick a file to open. For simplicity's sake, we will support three image formats
(BMP, GIF, and JPG) and three text file extensions (TXT, CS, and VB). If the user picks the image Hile
format, we open the ImageForm as the child form of the MDI application. If a text-file format is selected

instead, we use the TextForm class. We will show you the source for both the ImageForm and
TextForm shortly.

To arrange the children forms, we use the LayoutMdi method of the Form class. This method accepts
an enumeration of type MdiLayout. Possible values are Cascade, Arrangelcons, TileHorizontal, and
TileVertical.

The form also supports the ActiveMdiChild property to indicate the current active MDI child form. We
use this piece of information to handle the File ? Close menu item to close the currently selected MDI
child form.

To handle the CloseAll menu click event, we loop through the collection of all MDI child forms and
dispose them all.

The following is the source for ImageForm class:

usi ng System
usi ng System Dr aw ng;
usi ng System W ndows. For ns;

public class I mageForm: System W ndows. For nms. Form

{
private Menultem mul nagel tem
private Mnultem mul mage;
private Mai nMenu mMmuMai n;

private Bitmap m bnp;

public I mageForm()

{
mmul magel tem = new Menultem();
mul magel t em Text = "Il nage Mani pul ation";
mul magel tem Cl i ck += new Event Handl er (t hi s. Handl el nagel tem ;
mul mage = new Menulten();
mul mage. Text = " &l nmage";
mul mage. Mer geOrder = 1; /'l merge after File but before Wndow
mul mage. Menul t ems. AddRange(new Menulten] 1] {mul mageltent);
mulMai n = new Mai nMenu();
muMai n. Menul t ens. AddRange(new Menulteni 1] {mul mage});
this. Menu = nmmuMai n;
}

202

.NET Framework Essentials

public void SetlmgeNane(String sl mageNane)

{
try
{
m_bnp = new Bi t map(sl mageNane) ;
I nvalidate();
this. Text = "I MAGE: " + sl nageNang;
}
cat ch(Exception ex)
{
MessageBox. Show ("Error: " + ex.ToString());
}
}
protected override void OnPai nt (Pai nt Event Args e)
{
if(mbmp !'= null)
{
Graphics g = e. G aphics;
g. Drawl mage(m bnp, 0, 0, mbnp. Wdth, m bnp. Hei ght);
}
}

protected voi d Handl el magel t em(obj ect sender, EventArgs e)

{

}
}

MessageBox. Show("Handl i ng the inmage.");

Because this ImageForm class needs to draw the image file on the form, we include a reference to the
System.Drawing namespace. To render the image file onto the form, we rely on the Bitmap and
Graphics classes. First of all, we get the input filename and construct the Bitmap object with the
content of the input file. Next, we invalidate the screen so that it will be redrawn. In the overriden

OnP aint method, we obtained a pointer to the Graphics object and asked it to draw the Bitmap object
on the screen.

One other point that we want to show you is the fact that the Image menu item has its MergeOrder
property set to 1. We did this to demonstrate the menu-merging functionality of MDI applications.
When this form is displayed, the main menu of the MDI application changes to File, Image, and
Window.

To complete the example, following is the source to the TextForm class:

usi ng System
usi ng System Wndows. For ns;
using System | G

public class TextForm: Form

{
private Menultem muText|tem
private Menultem muText;
private Mai nMenu mmuMai n;

private TextBox textBox1,

public TextForn()

{
muTextltem = new Menultenm();
muText It em Text = "Text Manipul ation”;

203

muTextltem Cli ck += new Event Handl er (t hi s. Handl eText I ten);

muText = new Menultem);

muText . Text = "&Text",;

muText . MergeOrder = 1; /1 merge after File but before W ndow
muText . Menul t ens. AddRange(new Menul teni 1] {muTextlten});

mulMai n = new Mai nMenu();
mmuMai n. Menul t ens. AddRange(new Menultenf 1] {muText});
this. Menu = mMmuMai n;

t ext Box1 = new Text Box();

text Box1l. Mul tiline = true;

t ext Box1. Dock = System W ndows. Forns. DockStyle.Fill;
this.Controls. Add (this.textBox1);

}
public void SetTextFile(String sFileNane)
{
St reanReader reader = File.OpenText (sFil eNane);
t ext Box1l. Text = reader.ReadToEnd();
reader. Cl ose();
t ext Box1. Sel ecti onLength = 0;
this. Text = "TEXT: " + sFil eNane;
}

protected voi d Handl eText|tenm obj ect sender, EventArgs e)

{
}
}

MessageBox. Show("Handling the text file.");

Similar to the ImageForm class, the TextForm class also has its menu inserted in the middle of File
and Window. When a TextForm becomes the active MDI child form, the menu of the MDI application
becomes File, Text, and Window. This menu-merging is all done automatically. All we have to do is set
up the MergeOrder properties of the menu items.

Forthe functionality of the TextForm, we have a simple TextBox object. We set its Multiline property to
tr ue to simulate a simple text editor and have its docking property set to fill the whole form. When the
main form passes the text filename to this form, we read the input file and put the content into the text
box.

Eigure 8-7 illustrates the screen shot for this MDI application at runtime. In this instance, we have
three TextForms and three ImageForms open concurrently.

The following script is used to build this MDI application. As you can see, the target parameter is set to
wi nexe to indicate that the result of the compilation will be an executable instead of | i br ar y, which
will result in a DLL. Because we make use of the graphics package for our image rendering, we also
have to add the reference to the Syst em draw ng. dl | assembly. We have three forms in this
application: the main form, which is named VDI App, and the two MDI child forms, | negeFor mand
Text For m(make sure you type these commands all on one line):

csc /t:w nexe
/r:System W ndows. Forns. dl |
/r:system draw ng.dl |
MDI App. cs
| mgeForm cs
Text Form cs

204

.NET Framework Essentials

Figure 8-7. The MDI application
-1o/x

Flle Image ‘Window

Feas

Lgil =
wugil | UsE l E:
uzn

pul
[Pl

pr
pr| P !MI.L.E E:\WINNTPrairie ‘Windbmp
i
]
P
{
t
i
r

8.4 Windows Forms and Web Services

~" | WEW

Previously, Windows DNA tended not to use fat clients, rich Windows applications on PCs, because of
the need for an intrusive installation program. With .NET "copy" deployment, there is no such problem.
Now fat Windows clients can interface easily with business logic in the middle tier through XML/HTTP.

The rich client application will, in fact, perform better than a w eb-based frontend. However, everything
depends on the requirements of the application.

You can still add web references to Web Services that autogenerate proxy classes for use in your
Windows Forms applications just as for Web Forms applications. This isfurther evidence that .NET as
a whole is intended to embrace the Web. In Windows Forms, data binding is automatic once you've
set the control's DataSource to the appropriate data source, as seen in the next block of code. Note
that there is no explicit call to the DataBind method as in Web Forms data binding.

| ocal host. PubsWs ws = new | ocal host. PubsW5();
Dat aSet ds = ws. Get Authors();
Dat aGri d1. Dat aSource = ds.tabl es[0]. Defaul t Vi ew,

Again, you can also generate the source for the proxy class yourself using the wsdl.exetool, along

with the WSDL obtained from the web service. You can then include this source to your Windows
Forms project or compile the source into a DLL and add the DLL to the project as a reference.

8.5 Conclusion

Windows Forms provides a unified programming model for standard Windows application

development. It does not matter what language you are using—you can always be productive because
the common substrate has been developed to benefit all.

Windows Forms brings a true object-oriented programming model to Windows GUI development,

allowing for an extensible framework that is so much cleaner and easier to use compared to previous
attempts.

In this chapter, we've shown you the architecture of the Windows Forms application. The Controls and
Containers architecture, while very simple, is very powerful and flexible for developing Windows-based

205

applications. We have also shown you how to build a Windows Forms application, from a simple do-
nothing application, to data binding, to a multiple-document interface application.

206

.NET Framework Essentials

Appendix A. .NET Languages

This appendix contains two lists of languages (Microsoft-supported and third-party) with compilers that
generate IL to target the CLR. Expect a few more language additions.

A.1 Microsoft-Supported Languages for .NET

Table A-1 lists commercial languages that Microsoft supports. You can find more information about
each of these languages by browsing the provided URLSs.

Table A-1. Microsoft-supported languages for .NET

Language Link
C# http://msdn.microsoft.com/vstudio/nextgen/technology/csharpintro.asp
JScript http://msdn.microsoft.com/workshop/lanqguages/clinic/scripting07142000.asp
Managed C++|http://msdn.microsoft.com/vstudio/nextgen/Technology/managedext.asp
VB.NET http://msdn.microsoft.com/vstudio/nextgen/technology/language.asp

A.2 Third Party Languages for .NET

Table A-2 shows a list of third-party languages with compilers that target the CLR. Some of these are
research languages, while others are commercial languages that target .NET. Browse the provided
web sites to read more about the languages that interest you. As noted earlier, this list of languages

could grow by the time this book hits the market, so be sure to check the following sites for the most
up-to-date listings:

http://www.gotdotnet.com

http://msdn.microsoft.com/net/third party/default.asp#lang

Table A-2. Third-party languages

Language Link

APL
COBOL

http://www.dyadic.com

hitp:// ltool info/whi I I

Component Pascal

http://www?2.fit.qut.edu.au/CompSci/PLAS//ComponentPascal

Eiffel# http://www.eiffel.com/doc/comtech

Haskell http://haskell.cs.yale.edu/ghc

Mercury http://www.cs.mu.oz.au/research/mercury/dotnet.html
Mondrian http://www.mondrian-script.org

Oberon http://www.oberon.ethz.ch/lightning

Perl http://aspn.activestate.com/ASPN/NET

Python http://aspn.activestate.com/ASPN/NET

RPG http://www.asna.com/pr2%5F20%5F01.asp

Scheme http://rover.cs.nwu.edu/~scheme

Smalltalk http://www.gks.com

Standard ML http://www.research.microsoft.com/Projects/SML.NET
TMT Pascal http://www.tmt.com/net.htm

207

For more information, visit the O'Reilly .NET Center at http://dotnet.oreilly.com/ and the .NET
DevCenter at http://www.oreillynet.com/dotnet/.

208

.NET Framework Essentials

Appendix B. Common Acronyms

Table B-1 provides a listing of common acronyms or terms that you will come across in .NET -related
reading materials and conversations. Some of these acronyms or terms have little relevance to .NET,
but appear occasionally in this book, so we've provided them in this table for your convenience.

Table B-1. List of common acronyms

Acronym Description

ASMX File extension for Web Services source-code files.

ASPX File extension for ASP.NET source-code files.

.CFG File extension of .NET application configuration files.

ADO ActiveX Data Objects.

ADO+ This term is no longer used as of Beta 1 of the .NET SDK. The new and accepted term
is ADO.NET.

API Application Programming Interface.

AppDomain |[Short term to mean an application domain.

ASP Active Server Pages.

ASP+ _This term is no longer used as of Beta 1 of the .NET SDK. The new and accepted term
is ASP.NET.

ATL Active Template Library.

BCL Base Class Library.

BLOB Binary Large Object.

C AB Files Cabinet files.

CCwW COM Callable Wrapper.
Common Language Infrastructure. This is a subset of the CLR and base class libraries

CLI that Microsoft has submitted to ECMA so that a third-party vendor can build a .NET
runtime on another platform.

CLR Common Language Runtime.

CLS Common Language Specification.

CLSID Class identifier used in COM.

COFF Common Object File Format.

COM Component Object Model.

COM Interop |Short for COM interoperation.

COM+ 2.0 _This term is no longer used as of Beta 1 of the .NET SDK. The new accepted term
is .NET Framework.

COM+ This term is no longer used as of Beta 1 of the .NET SDK. The new and accepted term

Runtime is Common Language Runtime.

CTS Common Type System.

DB Database.

DCOM Distributed Component Object Model.

DHTML Dynamic HyperText Markup Language.

DISCO .Discove.ry of Web Services. A'Web Service has one or more .DISCO files that contain
information on how to access its WSDL.

DISPID !Dispatgh identifier. Used in COM to identify a method or a property for dynamic
invocation.

DLL Dynamically Linked Library.

DNA Distributed interNet Applications Architecture.

DOM Document Object Model.

209

DTD Datatype Document. This has been replaced by XSD schemas.

EconodIT Economical JIT Compiler.

EXE Executable.

GC Garbage Collector.

GDI Graphical Device Interface.

GDI+ A .NET library that supports advanced graphics management.

Global.asax |The global configuration file for an ASP.NET application.

GUID Globally Unique Identifier.

HTML HyperText Markup Language.

HTTP HyperText Transfer Protocol.

IDE Integrated Development Environment.

IDL Interface Definition Language.

IE Internet Explorer.

11D Interface Identifier.

s Internet Information Server.

IIW It Just Works.

IL Intermediate Language.

ILDASM Intermediate Language Disassembler.

Inproc In-Process.

ISAPI Information Server Application Programming Interface.

Machine.cfg |Configuration file for administrative policy for an entire machine.

MBR Marshal-By-Reference.

MBV Marshal-By-Value.

MFC Microsoft Foundation Classes.

MSI Microsoft Windows Installer Package.

MSIL Microsoft Intermediate Language.

MSVCRT Microsoft Visual C++ Runtime.

MSXML Microsoft Extended Markup Language.

MTS Microsoft Transaction Server.

NGWS This term is no longer used as of Beta 1 of the .NET SDK. The new and accepted term
is .NET.

NTFS NT Filesystem.

N-Tier Multi -tier.

NTLM NT Lan Manager.

OBJREF Object Reference.

Out of proc |Out-of-process.

OptJIT Optimized JIT compiler.

P/Invoke Platform Invoke.

PE Portable Executable.

perm Permissions.

RAD Rapid Application Development.

RCW Runtime Callable Wrapper.

REGASM Register Assembly tool.

RPC Remote Procedure Calling.

SCL SOAP Contract Language.

SDK Software Development Kit.

SEH Structured Exception Handling.

SMTP Simple Mail Transfer Protocol.

21C

.NET Framework Essentials

SOAP
SQL

Simple Object Access Protocol.
Structured Query Language.

Standard JIT

Optimized native code that includes verification of IL (generaged by the standard JIT
compiler).

STL Standard Template Library.

TCP Transport Control Protocol.

TLB Type Library.

TLBEXP Type Library Exporter Tool.

TLBIMP Type Library Importer Tool.

UDDI _Universal Description, Discovery,_ a_nd Integrgtion Se_:rvice. uDDI i§ a platform -
independent framework for describing and discovering Web Services.

UDF Uniform Data Format.

Ul User Interface.

URI Uniform Resource Identifier.

URL Uniform Resource Locator.

URT Universal Runtime. _This term is no longer used as of Beta 1 of the .NET SDK. The new
and accepted term is the .NET Framework.

VB Visual Basic.

VBRUN Visual Basic Runtime.

VES Virtual Execution System. The VI_ES isa subse_t of the CLR. The VES doesn't include
features such as debugging, profile, and COM interoperation.

Visual Studio |This term is no longer used as of Beta 1 of the .NET SDK. The new and accepted term

7 is Visual Studio.NET.

VOS Virtual Object System. This is now called the CTS.

VS.NET Visual Studio.NET.

WAP Wireless Access Protocol.

web.config Configuration file for ASP.NET. You define HTTP modules, r_land_ler§, session state
management, and other ASP.NET configurable parameters in this file.

WebForms This term is no longer used as of Beta 1 of the .NET SDK. The new and accepted term

is Web Forms (with a space).

WebServices

This term is no longer used as of Beta 1 of the .NET SDK. The new and accepted term
is Web Services (with a space).

Win32 Windows 32-bit.
. This term is no longer used as of Beta 1 of the .NET SDK. The new and accepted term
WinForms . . .
is Windows Forms (with a space).
WML Wireless Markup Language.
Web Service Description Language. Think of this as IDL for Web Services. Unlike IDL,
WSDL WSDL is expressed using only XML schemas. SDL is used in Betal of the .NET SDK,
but WSDL will replace SDL in Beta 2 and later installments.
XML Extensible Markup Language.
XPath XML Path.
XSD XML Schema Definition.
XSL Extensible Stylesheet Language.
XSLT Extensible Stylesheet Language Transformations.

211

212

.NET Framework Essentials

Appendix C. Common Datatypes

Each of the .NET languages might provide its own keywords for the types it supports. For example, a
keyword for an integer in VB is | nt eger , whereas in C# or C++itisi nt ; aboolean isBool ean in VB,
butbool in C#or C++. In any case, the integer is mapped to the the class Int32, and the boolean is
mapped to the class Boolean in the System namespace. Table C-1 lists all simple datatypes common
to the .NET Framework. Non-CLS-compliant types are not guaranteed to interoperate with all CLS-
compliant languages.

Table C-1. Common datatypes

Type Description
Boolean |True or false.
Byte 8-bit unsigned integer: 0 to 255.
Char Character. Unicode 16-bit character.

DateTime |Represents a date and time value.

Can represent positive and negative values with 28 significant digits:
Decimal |79,228,162,514,264,337,593,543,950,335 through -
79,228,162,514,264,337,593,543,950,335.

Stores 64 -bit floating -point values: -1.79769313486231570e308 to
1.79769313486231570e308.

Guid Represents a globally unique identifier (GUID).

Int16 Stores 16 -bit signed integers: -32,768 to 32,767.

Int32 Stores 32 -bit signed integers: -2,147,483,648 to 2,147,483,647.

Int64 Stores 64 -bit signed integers: -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.
SByte Represents an 8-bit signed integer. The SByte type is not CLS -compliant. -128 to 127.

Represents an IEEE 754f, single precision, 32-bit value: -3.40282346638528859e38 to
3.40282346638528859€e38.

String Represents a string of Unicode characters.
Uintl6 Represents a 16-bit unsigned integer. The UlInt16 type is not CLS-compliant. to 65,535.

Represents a 32-bit unsigned integer. The UInt32 type is hot CLS-compliant. to
4,294,967,295

Represents a 64-bit unsigned integer. The UInt64 type is not CLS-compliant. The UInt64
Uint64 datatype can represent positive integers with 18 significant digits: to
184,467,440,737,095,551,615.

Void Void.

Double

Single

UInt32

Table C-2 shows a number of useful container types that the .NET Framework provides.

Table C-2. Container types

Type Description
ArrayList |This class implements the IList interface. The array can grow dynamically in size.
. This class represents a compact array of bit values. Each element represents a Boolean
BitArray
value (true/false).
HashTabl This class represents a collection of associated keys and values that are organized based
ashlableisn the hash code of the key.
Queue This class represents a first-in, first-out collection construct.
SortedList This class is similar to HashTable except that all elements are sorted by their actual keys
(not hashed) and elements are accessible through either key or index.

213

|Stack

This class represents a first-in, last-out stack construct.

C.1 Usage

This section demonstrates how you can take advantage of container types. We don't illustrate all

methods and properties, but we show the important characteristics of these types. All examples in this
chapter are in C#; however, you can use these CLS types from any other CLS-compliant languages.

C.1.1 ArrayList

In the following code listing, we demonstrate some of the critical usages of the ArrayList class, such as

adding data to the end of the list, inserting data anywhere in the list, iterating through the list, and
sorting the list.

usi ng System
usi ng System Col | ecti ons;
public class TestArrayList {

public static void Main() {

214

ArraylList arrList = new ArrayList();
arrList. Add(" Monday") ;

arrList. Add(" Tuesday");

arrList. Add("Wednesday") ;

arrList. Add(" Thur sday") ;

/1 We'll try to insert Friday afterward
/1 arrlList.Add("Friday");

arrList.Add("Sat urday");
arrList.Add("Sunday");

int i = 0;
| Enunerator arrlterator = arrList. GetEnunerator();
Consol e. WiteLine("There are: {0} days in a week.", arrlList. Count);
while(arrlterator. MoveNext ()) {
Console. WiteLine("[{0}] {1}", i++, arrlterator.Current);

}

Consol e. WiteLine("lnsert Friday");
arrlList.Insert (4, "Friday");

i =0;
arrlterator = arrlList. GetEnunerator();
Console. WitelLine("There are: {0} days in a week.", arrlList.Count);
while(arrlterator. MoveNext()) {
Consol e. WiteLine("[{0}] {1}", i++, arrlterator.Current);

}

arrList. Sort();

i =0;
arrlterator. Reset();
Console.WiteLine("Sorted as text");
while(arrlterator. MoveNext()) {
Console. WiteLine("[{0}] {1}", i++, arrlterator.Current);
}

Cbj ect oDay = "Friday";

.NET Framework Essentials

Consol e. WiteLine("Index for Friday using BinarySearch: {0}",
arrList.BinarySearch(oDay));

Consol e. WiteLi ne("I ndex for Sunday using BinarySearch: {0}",
arrList.BinarySearch("Sunday"));

}
C.1.2BitArray

The sample code for BitArray is seltexplanatory, as shown in the following code listing. We use the bit

array to store and retrieve access rights in the following example. You can use the Set and Get
methods as well as the [] operator.

usi ng System
usi ng System Col | ecti ons;
public class TestBitArray {

enum Perm ssions {canRead, canWite, canCreate, canDestroy};

public static void Main() {

BitArray bitArr = new BitArray(4);

bitArr. Set((int)Perm ssions. canRead, true);
bitArr[(int)Perm ssions.canWite] = fal se;

bi tArr[(int)Perm ssions.canCreate] = true;

bit Arr[(int)Perm ssions.canDestroy] = fal se;

Console. WiteLine("bitArr count: {O}\tlength: {1}",
bi t Arr. Count,
bi t Arr. Length);

Consol e. WiteLi ne("Perm ssions:");
Consol e. WitelLine("Read: {0}",
bi t Arr[(int)Perm ssions.canRead]) ;
Console. WiteLine("Wite: {0}",
bitArr[(int)Perm ssions.canWite]);
Consol e. WitelLine("Create: {0}",
bitArr[(int)Perm ssions.canCreate]);
Consol e. WiteLi ne("Destroy: {0}",
bit Arr[(int)Perm ssions.canDestroy]);

}
C.1.3HashTable

The HashTable datatype is similar to the dictionary object, which is basically an associated array.
Each element stored in the table is associated with a key. Because HashTable implements the
IDictionaryEnumerator, we can obtain the enumerator to help us iterate through the data collection. As
you can see from the sample code, we can also loop through the data using the keys orval ues
collection.

usi ng System

usi ng System Col | ecti ons;

public class TestHashtable ({
public static void Main() {

Hasht abl e hashThl = new Hashtable();
hashThbl . Add(" Paraml", "User Nanme");

215

}

hashTbl . Add(" Par an2", "Password");

| Di ctionaryEnunerat or hashEnunerator = hashTbl. Get Enunerator();
Console. WiteLine();
Consol e. WiteLine("Loop through with enunerator:");
whi | e (hashEnumer at or. MoveNext ())
Consol e. WitelLine("Key: {0}\tValue: {1}",
hashEnuner at or . Key,
hashEnuner at or. Val ue) ;

}

Console. WiteLine();

Consol e. WiteLine("Loop through Keys:");

foreach(string key in hashThbl. Keys) {
Consol e. Wit eLi ne(key);

}

Console. WiteLine();
Consol e. WiteLi ne("Loop through Values:");
foreach(string val in hashTbl. Val ues) {

Consol e. WiteLine(val);

}

Console. WitelLine();

Consol e. WiteLine("Loop through Keys:");
foreach(string key in hashTbl. Keys) {

Consol e. WitelLine("Key: {0}\tValue: {1}", key, hashTbl[key]);

C.1.4 Queue

To demonstrate the use of a queue Abstract Data Type (ADT), we create a fictitious order-processing
code listing. Each enqueued item represents a line item in a typical order. We will then dequeue each
line item and perform the total calculation.

using System
usi ng System Col | ecti ons;

public class Test Queue {

216

public static void Main() {

string sLinelteml, sLinelteng;
Queue myQueue = new Queue();

sLi nelteml "123\tltem 123\t4\t 3. 39";
sLi nelten? "ABQtltem ABQ t1\t9. 49";
myQueue. Enqueue(sLi nelteml);
myQueue. Enqueue(sLi neltenR) ;

Consol e. WiteLine("\nProcessing Order:\n");
String sLineltem=""
String [] lineltemArr;
Decinal total = O;
whi | e(nyQueue. Count > 0) {
sLineltem = (String) myQueue.Dequeue();

.NET Framework Essentials

Console. WiteLine("\t{0}", sLineltem;
lineltemArr = sLineltem Split(new Char[] {'\t'});
total += lineltemArr[2].Tolnt16() * lineltemArr[3]. ToDecimal ();

}
Consol e. WitelLine("\nOrder Total: {0}\n", total);

}
C.1.5SortedList

The following code demonstrates the sorted list AD T. A sorted list is similar to a hash table or a
dictionary type. Each item of data is associated with the key with which the list is sorted. Notice that
the strings are added to the list in no particular order. However, when we iterate through the list, all
strings are sorted by their associated keys.

usi ng System
usi ng System Col | ecti ons;
public class TestSortedList {

public static void Main() {

SortedLi st nySortedLi st = new SortedList();
mySort edLi st. Add(" AA", "Hello");

mySort edLi st. Add(" AC', "!");

nySortedLi st. Add(" AB", "World");

Consol e. WiteLine("\nLoop through manual ly:\n");
for(int i=0; i< mySortedList. Count; i++) {
Consol e. WiteLine("Key: {0}\tValue: {1}",
mySort edLi st . Get Key(i),
my Sor t edLi st . Get Byl ndex(i));

}

I Di ctionaryEnunmerator mylterator = nySortedList.GetEnunerator();

Consol e. WitelLine("\nLoop through with enunmerator:\n");
while (nylterator.MveNext()) {

Consol e. WiteLine("Key: {0}\tValue: {1}"
myl terator.Key,
nmyl t erat or.Val ue);

}
C.1.6 Stack

The following code demonstrates the first-in, last-out characteristics of the stack abstract datatype.
The output from the pop operation initially shows the fourth item, the third item, and so on.

usi ng System
usi ng System Col | ecti ons;
public class Test Stack{

public static void Main() {
Stack nyStack = new Stack();
my St ack. Push("ltem 1");

my St ack. Push("ltem 2");
my St ack. Push("ltem 3");

217

nmySt ack. Push("Item 4");

whi | e(mySt ack. Count > 0) {
Consol e. WiteLi ne(nyStack.Pop());

}

}

Appendix D. Common Utilities

Microsoft .NET Framework provides many tools to help developers make the best use of the
Framework. In the following sections, we document the commonly used subset of .NET tools that

we've used throughout this book:

Assembly Generation Utility (al.exe)
Assembly Registratio n Utility (gac.exe)
MSIL Assembler (ilasm.exe)

MSIL Disassembler (ildasm.exe)

C++ Compiler (cl.exe)

C# Compiler (csc.exe)

VB Compiler (vbc.exe)

PE File viewer (dumpbin.exe)

Type Library Exporter (tlbexp.exe)
Type Library Importer ¢lbimp.exe)
XML Schema Definition Tool (xsd.exe)
Shared Name Utility (sn.exe)

Web Service Utility (wsdl.exe)

D.1 Assembly Generation Utility (al.exe)

While al.exeis generally used to generate assemblies with manifests, it can also be used to install

assemblies into the Global Assembly Cache (GAC). The following table shows some of the common
usages of the Assembly Generation Utility:

Option

Description

/flags:flags

Specifies a value for the Flags field in the assembly.
0x0000: side-by-side compatible.

0x0010: cannot execute with other versions in the same
application domain.

0x0020: cannot execute with other versions in the same
process.

0x0030: cannot execute with other versions on the same
computer.

/hel por/?

Use to get help for this command.

/install:fil enameor
[i:filenane

Use to install a strongly named assembly into the GAC. See also
/ keyfileand/ keynane. If/ out is specified, do not specify
filename here.

/ keyfile:keyfil enanme or
/ keyf: keyfil enane

Use to create shared components. keyf i | enanme contains a key
pair generated with the Shared Name Utility (sn.exe). The compiler

218

.NET Framework Essentials

inserts the public key into the assembly manifest and then signs the
assembly with the private key.

Use to create shared components. keycont ai ner contains a key
pair generated and installed into a key container with the Shared
Name Utility (sn.exe). The compiler inserts the public key into the
assembly manifest and then signs the assembly with the private
key.

Specifies the entry-point method name when converting a module
to an executable.

/out: fil enane Specifies the output filename.

Specifies the file format of the output file (i b for library, exe for
console executable, andwi n for win32 executable). The default

/ keynane: keycont ai ner or
/ keyn: keycont ai ner

/ mai n: entrynmet hod

/type:lib|exe|lw nor

f t1iblexelwn settingis| i b.
/ ver si on: naj or . Specifies version information for the assembly. The default value is
m nor.revision.build 0.

D.2 Assembly Registration Utility (gac.exe)

You can use gac.exe to install and uninstall an assembly, as well as to list the content of the GAC. The
following table shows some of the common usages of the Assembly Registration Utility:

Option Description
- | To list the content of the GAC.
-1 c To list the content of the GAC.
-i filenane [Toinstall an assembly with file namedfi | enane into the GAC.

To uninstall an assembly from the GAC by specifying the assembly name. If multiple
versions of the same assembly exist, all of them will be removed unless a version is
specified with the assenbl ynane (i.e., gac - u nyAssenbl y, ver =1. 0. 0. 1).

- U
assenbl yname

D.3 MSIL Assembler (ilasm.exe)

This tool takes MSIL as input and generates a portable executable (PE) file containing the MSIL and
the metadata required to run on the .NET Framework. This is most useful to vendors who would like to
create MSIL-compliant compilers. All they have to do is write the compiler to translate the source
language to MSIL. llsam.exe will take the second step to put the MSIL content into the PE format
where it can be executed on the .NET Framework. The general syntax for MSIL assembler is:

ilasm[options] MSILfilenane

The following table shows some of the common usages of the assemblers:

Option Description

This option ensures that the output PE contains debugging information such as

/ debug local variables, argument names, and line numbers. This is useful for debug
build.

/ dl | This option produces a. dl | output.

/ exe This option produces an. exe output.

/1isting This option produces a listing of the output on STDOUT.

/ out put =fi | enane|f i | enane is the output filename.

/ ? This option is used to obtain command-line help.

219

D.4 MSIL Disassembler (ildasm.exe)

This tool extracts the MSIL code from a PE file targeted for .NET Framework. The general syntax for
this tool is:

Il dasm [opti ons] PEFi |l enanme

The following table shows some of the common usages of the disassembler:

Option Description
/1inenum This includes references to original source lines.
/out =fi | ename The output goes to a file instead of in a GUI dialog box.
/ source This shows original source lines as comments.
/ t ext The output goes in a console window.
/ t okens This shows metadata tokens as classes and members.

D.5 C++ Compiler (cl.exe)

The following table shows some of the common usages of the C++ compiler:

Option Description

/ CLR or/ COMVI+ This option flags the compiler to compile .NET-runtime managed code.

Normally, for C++ managed code, this setting should point to the main entry-

/entry: nmet hodnanme point function.

/11 nk This option combines the compile and link steps.

/out:filenane This option allows for the output filename.

D.6 C# Compiler (csc.exe)

The following table shows some of the common usages of the C# compiler:

Option Description

keyfi | enane specifies the key file that contains the

la. keyfile:keyfilename key pair for signing the assembly.

/ a.version:version This option enables versioning of assemblies.

With this option, the compiler will emit debugging
information in the output file.

This option is similar to C++. Use this option to define
preprocessor symbols.

/ debug

/ def i ne: synbol or/d:synbol

docname is the XML output file for the autogenerated

[doc:docnane XML comment embedded in C# code.

This option shows the command-line help for the C#

/el p compiler.

If there ismore than one Main entry in different classes,
/ mai n: cl assnane you will have to specify the Main entry in which class
you want the entry point of the application.

/out:fil enanme This option represents the output filename.

_ _ This option allows single or multiple libraries be included
/reference:libnameor/r:libname with this compilation. For multiple libraries to be
included, use a semicolon as the delimiter.

/target:exe|library|w nexe or This option allows you to specify the type of the output:

220

.NET Framework Essentials

/t:exe|library|w nexe exe for console executables, | | br ary for DLLs, and
wi nexe for Windows Form applications.

If you use unsafe keywords in your C# code, you will

/ unsaf e - : -
have to use this option when compiling your source.

D.7 Visual Basic Compiler (vbc.exe)

The following table shows some of the common usages of the Visual Basic compiler:

Option Description

This option enables common language specification

fcls (CLS) checking.
I deb With this option, the compiler will emit debugging
ebug information in the output file.
/ defi ne:synmbol or/d: synmbol Use this option to define preprocessor symbols.
This option shows the command-ine help for the Visual
/ hel por/?

Basic compiler.

keycont ai ner specifies the key container that
/ keycont ai ner: keycont ai ner contains the key pair for signing the assembly. See
sn.exe for information on generating the key container.

keyfi | e specifies the key file that contains the key pair
/ keyfile:keyfile for signing the assembly. Seesn.exe for information on
generating the key file.

If there is more than one Main entry in different classes,

/ mai n: cl assnamne you will have to specify the Main entry in which class
you want the entry point of the application.
/out:filenane This option represents the output filename.

Turn on or offopt i onexpl i cit toenforce explicit or

[licit[+/ - S . : L
optionexplicit[+/ -] implicit declaration of variables. The default setting is on.

Turn on or offopti onstri ct to disallow or allow

optionstrict[+/ -
. [] casting with truncation. The default setting is on.

This option allows single or multiple libraries be included
/reference: | i bnameor/r: |ibname with this compilation. For multiple libraries to be
included, use a semicolon as the delimiter.

This option allows you to specify the type of the output:
exe for console executables, | i brary for DLLs, and
wi nexe for Windows Form applications.

/target:exe|library|w nexe or
/t:exe|library|w nexe

/ ver sion: version This option enables versioning of assemblies.

D.8 PE File Format Viewer (dumpbin.exe)

dumpbinis not a new utility. However, since .NET Framework stores the IL inside the extended PE

format, this old utility is still very useful for examining the structure of executable or DLLs, as well as
listing import and export entries of the binaries. The general syntax for this utility is:

Dunpbi n [options] PEFi | enane

The following table shows some of the common dumpbin usages:

Option Description
/ al | Displays all information from the PE file.
/ exports Displays all exports from the PE file.

221

/ header Displays the header information from the PE file.
/inmports Displays all imports for the PE file.

D.9 Type Library Exporter (tlbexp.exe)

Type library exporter and importer are the two tools necessary for COM interop. The exporter
generates a type library for a .NET Framework assembly so that other COM components can interop
with .NET components. The general syntax for tlbexp.exe is:

t1 bexp Assenbl yNane [options]

The following table shows some of the common usages of tlbexp.exe :

Option Description
/ nol ogo This option suppresses the logo of thet | bexp executable.
/out:filename |filenane isthe name of the type library file.
/ silent This option suppresses all messages from the t | bexp executable.
/ ver bose This option displays extra information while converting the component.
/?or/help This o ption displays the help information for the tool.

D.10 Type Library Importer (tlbimp.exe)

As the reverse tool of the type library exporter, the importer generates a .NET proxy component for a

COM component so that .NET components can use legacy COM components. The general syntax for
tlbimp.exe is:

tl binp PEFile [options]

The following table shows some of the common usages of tlbimp.exe :

Option Description

This option signs the resulting assembly with the private key in the
keycont ai ner. The public key in the keyfi | e will be used in the
assembly manifest. See sn.exe for the keycont ai ner generation.

/ keycont ai ner:
keycont ai ner

This options signs the resulting assembly with the private key in the
/ keyfile: keyfile keyfile.The publickeyinthekeyfi| ewill beusedintheassembly

manifest. See sn.exe for keyf i | e generation.

/ nol ogo This option suppresses the logo of thet | bi np executable.

/out:fil ename fi | ename is the name of the type library file.

/ sil ent This option suppresses all messages from the t | bi np executable.
/unsaf e This option produces interfaces without .NET Framework security checks.
/ ver bose This option displays extra information while converting the component.
/?or/help This option displays the help information for the tool.

D.11 XML Schema Definition Tool (xsd.exe)

XML Schema Definition (XSD) is useful when working with XML schemas that follow the XSD
language. With XSD, you can perform the following transformations:

XDR to XSD
XML to XSD

222

.NET Framework Essentials

Classes to XSD
XSD to Classes
XSD to DataSet

D.11.1 XDR to XSD
To convert an XDR-formatted file to XSD, you would use the following syntax:
xsd [options] file.xdr

Note that the file extension.xdr dictates the conversion from XDR to XSD.

D.11.2 XML to XSD
To convert an XML-formatted file to XSD, you would use the following syntax:
xsd [options] file.xm

Note that the file extension.xml dictates the conversion from XML to XSD.

D.11.3 Classes to XSD

You can convert classes to XSD by specifying the runtime assembly file (.exe or .dll extension) as the
filename to the utility. You can also specify a particular type within the assembly you want to convert to

XSD using the/ t ype flag. Thet ypenane can be a wildcard match. If you omit the/ t ype flag, all
types in the assembly will be converted. The syntax follows:

Xsd [/ TYPE: typenane] assenbl yFile
or:

Xsd [/ T:.typenane] assenblyFile
D.11.4 XSD to Classes

To convert XSD back to classes, use the/ cl asses or/ ¢ flag. You can specify a particular element in

the XSD schema to be converted to a class. You can also specify the language for the class source
file. The general syntax follows:

xsd / CLASSES
| ELEMENT: el ement
/ NAMESPACE: nanmespace
/ LANGUAGE: | anguage /URI:uri file.xsd

or:
xsd /C E: el enent /N namespace /L:|anguage /U uri file.xsd

Note thatnanespace, | anguage, and ur i can be specified only once.

D.11.5 XSD to DataSet

To convert XSD to dataset, use the/ dat aset or/ d flag. Again, you can narrow down to a particular
element in the XSD schema to be converted. The general syntax follows:

223

xsd /D [/ DATASET] file.xsd

D.12 Shared Name Utility (sn.exe)

sn.exe guarantees unique names for shared components because these components will end up in

the GAC. Each shared component is signed with a private key and published with the public key. The
following table shows some common usages of sn.exe :

Option Description
/? This option displays more command-line help.
-d keycont ai ner This option is used to remove the keycont ai ner from the CSP.
-1 keyfile This option reads the key pair inkeyf i | e and installs it in the key container
keycont ai ner keycont ai ner inthe Cryptographic Service Provider (CSP).
-k keyfile This option generates a new key pair and writes it tokeyfi | e.
-v assenbly This option is used to verify the shared name in anassenbl y.

D.13 Web Service Utility (wsdl.exe)

wsdl.exe helps create ASP.NET Web Services and proxies for their clients. The most common usage
of wsdl.exe is to generate proxy classes for web services:

wsdl /command: pr oxy
/ pat h: path
/ I anguage: | anguage
/ namespace: nanespace
/ out : out put
/ protocol : protocol

The pat h parameter is a local path to a service-description file or URI where the SDL file can be
retrieved. Thel anguage parameter specifies the language for the outputproxy source file. It can be
C#, VB, or JS. The generated class will be in the specified namespace. The output source file is
controlled by theout put option. The pr ot ocol controls which protocol the proxy will use to
communicate with the Web Service. The choices of protocols provided by the .NET Framework are

SOAP, HttpGet, and HttpPost. You can also have your own protocol here if you've extended the
Protocolinfolmporter class.

For short names options, use the following.

wsdl /c:proxy
/ pa: path
/'1:1anguage
/ n: namespace
/ 0: out put
/ prot ocol : protocol

224

.NET Framework Essentials

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, b reathing
personality and life into potentially dry subjects.

The animals on the cover of .NET Framework Essentials are shrimp. The 2,000 species of shrimp
range in size from fractions of an inch to 8 inches-with an average size of about 4 inches. Like other
crustaceans (including lobsters, crabs, crayfish, and barnacles), the shrimp has a segmented body
covered by a hard, translucent exoskeleton, has a flexible abdomen and fan-shaped tail, and utilizes a
"toolkit" of jointed appendages-each with specialized functions for various activities. The shrimp's
exoskeleton, while providing a strong protective layer over its body, must be shed occasionally to allow
for growth in a process called molting. Similar to this process of regrowth, lost appendages can be
regenerated if need be.

Different species of shrimp are found in marine and fresh water--shallow and deep--all over the world.
Swimming backward by rapidly flexing its abdomen and tail, and with the assistance of specialized
legs for swimming, the shrimp feeds on smaller plants and animals, as well as carrion. In fact, several
species engage in symbiotic (mutually benefical or dependent) relationships with other organisms. The
coral shrimp (Stenopus hispidus) cleans the scales of the coral fish, while the fish in turn swims
backward through the shrimp's pincers (presumably to clean them). In addition, species of Alpheus
shrimp share burrows with blind goby fish. The shrimp brings food to the goby, while the goby cleans
the burrow and warns the shrimp of dangerby using signaled body movements.

Interestingly, certain species of shrimp are hermaphroditic. The juvenile shrimp grows up as a male
and is fully functional in sexual reproduction with females. When it reaches half the size of the female,
the male shrimploses its male sexual organs and develops those of the female. Upon reaching full
size, the shrimp is then a typical female and is fully able to mate again. However, this time it mates
with a juvenile male, rather than with an adult female as before.

Jeffrey Holcomb was the production editor and copyeditor for .NET Framework Essentials Mary Brady
and Claire Cloutier provided quality control. Sada Preisch and Edie Shapiro provided production
assistance. Joe Wizda wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The
cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the
cover layout with Quark™XPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout based on a series design by Nancy Priest. Anne-Marie
Vaduva converted the files from Microsoft Word to FrameMaker 5.5.6 using tools created by Mike
Sierra. The text and heading fonts are ITC Garamond Light and Garamond Book; the code font is
Constant Willison. The illustrations that appear in the book were produced by Robert Romano and
Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. This colophon was written
by Jeffrey Holcomb.

225

226

